Seizures, behavioral deficits and adverse drug responses in two new genetic mouse models of HCN1 epileptic encephalopathy

  1. Andrea Merseburg
  2. Jacquelin Kasemir
  3. Eric W Buss
  4. Felix Leroy
  5. Tobias Bock
  6. Alessandro Porro
  7. Anastasia Barnett
  8. Simon E Tröder
  9. Birgit Engeland
  10. Malte Stockebrand
  11. Anna Moroni
  12. Steve Siegelbaum
  13. Dirk Isbrandt
  14. Bina Santoro  Is a corresponding author
  1. German Center for Neurodegenerative Diseases, Germany
  2. Columbia University, United States
  3. University of Milan, Italy
  4. University of Cologne, Germany

Abstract

De novo mutations in voltage- and ligand-gated channels have been associated with an increasing number of cases of developmental and epileptic encephalopathies, which often fail to respond to classic antiseizure medications. Here, we examine two knock-in mouse models replicating de novo sequence variations in the HCN1 voltage-gated channel gene, p.G391D and p.M153I (Hcn1G380D/+ and Hcn1M142I/+ in mouse), associated with severe drug-resistant neonatal- and childhood-onset epilepsy, respectively. Heterozygous mice from both lines displayed spontaneous generalized tonic-clonic seizures. Animals replicating the p.G391D variant had an overall more severe phenotype, with pronounced alterations in the levels and distribution of HCN1 protein, including disrupted targeting to the axon terminals of basket cell interneurons. In line with clinical reports from patients with pathogenic HCN1 sequence variations, administration of the antiepileptic Na+ channel antagonists lamotrigine and phenytoin resulted in the paradoxical induction of seizures in both mouse lines, consistent with an effect to further impair inhibitory neuron function. We also show that these variants can render HCN1 channels unresponsive to classic antagonists, indicating the need to screen mutated channels to identify novel compounds with diverse mechanism of action. Our results underscore the necessity of tailoring effective therapies for specific channel gene variants, and how strongly validated animal models may provide an invaluable tool towards reaching this objective.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 5, 9 and 10. Microarray expression data have been deposited in GEO under accession code GSE209630.

The following data sets were generated

Article and author information

Author details

  1. Andrea Merseburg

    Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0630-6564
  2. Jacquelin Kasemir

    Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9176-5241
  3. Eric W Buss

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0473-4717
  4. Felix Leroy

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tobias Bock

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alessandro Porro

    Department of Biosciences, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4845-6165
  7. Anastasia Barnett

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Simon E Tröder

    Faculty of Medicine, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Birgit Engeland

    Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Malte Stockebrand

    Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9009-137X
  11. Anna Moroni

    Department of Biosciences, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1860-406X
  12. Steve Siegelbaum

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Dirk Isbrandt

    Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4720-1016
  14. Bina Santoro

    Department of Neuroscience, Columbia University, New York, United States
    For correspondence
    bs73@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4277-1992

Funding

National Institutes of Health (NS106983)

  • Steve Siegelbaum

National Institutes of Health (NS109366)

  • Steve Siegelbaum

National Institutes of Health (NS123648)

  • Steve Siegelbaum

Deutsche Forschungsgemeinschaft (FOR 2715 (IS63/10-1/2))

  • Dirk Isbrandt

Deutsche Forschungsgemeinschaft (CRC 1451 (project ID 431549029 - B01))

  • Dirk Isbrandt

Fondazione Telethon (GGP20021)

  • Anna Moroni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mouse colonies were maintained both at the University of Cologne and at Columbia University (New York). For research conducted in Cologne, all experiments were in accordance with European, national and institutional guidelines and approved by the State Office of North Rhine-Westphalia, Department of Nature, Environment and Consumer Protection (LANUV NRW, Germany; reference number 81-02.04.2018.A085). For research conducted in New York, all animal experiments were conducted in accordance with policies of the NIH Guide for the Care and Use of Laboratory Animals and the Institutional Animal Care and Use Committee of Columbia University (IACUC protocols AABL5560, AABL5563, AABI2614 and AAAX6450).

Copyright

© 2022, Merseburg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,852
    views
  • 382
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea Merseburg
  2. Jacquelin Kasemir
  3. Eric W Buss
  4. Felix Leroy
  5. Tobias Bock
  6. Alessandro Porro
  7. Anastasia Barnett
  8. Simon E Tröder
  9. Birgit Engeland
  10. Malte Stockebrand
  11. Anna Moroni
  12. Steve Siegelbaum
  13. Dirk Isbrandt
  14. Bina Santoro
(2022)
Seizures, behavioral deficits and adverse drug responses in two new genetic mouse models of HCN1 epileptic encephalopathy
eLife 11:e70826.
https://doi.org/10.7554/eLife.70826

Share this article

https://doi.org/10.7554/eLife.70826

Further reading

    1. Neuroscience
    Jessica Royer, Valeria Kebets ... Boris C Bernhardt
    Research Article

    Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples and robust to variations in analytical parameters. Although model parameters yielded statistically significant brain-behavior associations in unseen data, generalizability of the model was rather limited for all three latent components (r change from within- to out-of-sample statistics: LC1within=0.36, LC1out=0.03; LC2within=0.34, LC2out=0.05; LC3within=0.35, LC3out=0.07). Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.

    1. Neuroscience
    Hannah R Martin, Anna Lysakowski, Ruth Anne Eatock
    Research Article

    In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (Kcna10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular HCs of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (Knq) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.