The cell adhesion molecule Sdk1 shapes assembly of a retinal circuit that detects localized edges

Abstract

Nearly 50 different mouse retinal ganglion cell (RGC) types sample the visual scene for distinct features. RGC feature selectivity arises from their synapses with a specific subset of amacrine (AC) and bipolar cell (BC) types, but how RGC dendrites arborize and collect input from these specific subsets remains poorly understood. Here we examine the hypothesis that RGCs employ molecular recognition systems to meet this challenge. By combining calcium imaging and type-specific histological stains we define a family of circuits that express the recognition molecule Sidekick 1 (Sdk1) which include a novel RGC type (S1-RGC) that responds to local edges. Genetic and physiological studies revealed that Sdk1 loss selectively disrupts S1-RGC visual responses which result from a loss of excitatory and inhibitory inputs and selective dendritic deficits on this neuron. We conclude that Sdk1 shapes dendrite growth and wiring to help S1-RGCs become feature selective.

Data availability

Sample registration fields, registration code, and GCaMP6f datasets are available at Dryad (https://doi.org/10.5061/dryad.4xgxd2593).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Pierre-Luc Rochon

    McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Catherine Theriault

    McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Aline Giselle Rangel Olguin

    McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Arjun Krishnaswamy

    McGill University, Montreal, Canada
    For correspondence
    arjun.krishnaswamy@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7706-4657

Funding

Canadian Institutes of Health Research (project grant)

  • Arjun Krishnaswamy

Natural Sciences and Engineering Research Council of Canada (discovery grant)

  • Arjun Krishnaswamy

Canadian Institutes of Health Research (Graduate Fellowship)

  • Pierre-Luc Rochon

Fonds de Recherche du Québec - Santé (Graduate Fellowship)

  • Aline Giselle Rangel Olguin

Consejo Nacional de Ciencia y Tecnología (Graduate Fellowship)

  • Aline Giselle Rangel Olguin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals were used in accordance with the rules and regulations established by the Canadian Council on Animal Care and protocol (2017-7889) was approved by the Animal Care Committee at McGill University

Copyright

© 2021, Rochon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,411
    views
  • 146
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pierre-Luc Rochon
  2. Catherine Theriault
  3. Aline Giselle Rangel Olguin
  4. Arjun Krishnaswamy
(2021)
The cell adhesion molecule Sdk1 shapes assembly of a retinal circuit that detects localized edges
eLife 10:e70870.
https://doi.org/10.7554/eLife.70870

Share this article

https://doi.org/10.7554/eLife.70870

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Rocio Vicario, Stamatina Fragkogianni ... Frédéric Geissmann
    Research Article

    Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however, few studies have investigated its role in neurodegenerative processes such as Alzheimer’s disease (AD). Here, we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in humans, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.

    1. Developmental Biology
    2. Neuroscience
    Mahima Bose, Ishita Talwar ... Shubha Tole
    Research Article

    In the developing vertebrate central nervous system, neurons and glia typically arise sequentially from common progenitors. Here, we report that the transcription factor Forkhead Box G1 (Foxg1) regulates gliogenesis in the mouse neocortex via distinct cell-autonomous roles in progenitors and postmitotic neurons that regulate different aspects of the gliogenic FGF signalling pathway. We demonstrate that loss of Foxg1 in cortical progenitors at neurogenic stages causes premature astrogliogenesis. We identify a novel FOXG1 target, the pro-gliogenic FGF pathway component Fgfr3, which is suppressed by FOXG1 cell-autonomously to maintain neurogenesis. Furthermore, FOXG1 can also suppress premature astrogliogenesis triggered by the augmentation of FGF signalling. We identify a second novel function of FOXG1 in regulating the expression of gliogenic cues in newborn neocortical upper-layer neurons. Loss of FOXG1 in postmitotic neurons non-autonomously enhances gliogenesis in the progenitors via FGF signalling. These results fit well with the model that newborn neurons secrete cues that trigger progenitors to produce the next wave of cell types, astrocytes. If FGF signalling is attenuated in Foxg1 null progenitors, they progress to oligodendrocyte production. Therefore, loss of FOXG1 transitions the progenitor to a gliogenic state, producing either astrocytes or oligodendrocytes depending on FGF signalling levels. Our results uncover how FOXG1 integrates extrinsic signalling via the FGF pathway to regulate the sequential generation of neurons, astrocytes, and oligodendrocytes in the cerebral cortex.