Subcellular proteomics of dopamine neurons in the mouse brain

  1. Benjamin D Hobson
  2. Se Joon Choi
  3. Eugene V Mosharov
  4. Rajesh K Soni
  5. David Sulzer  Is a corresponding author
  6. Peter Sims  Is a corresponding author
  1. Columbia University Medical Center, United States

Abstract

Dopaminergic neurons modulate neural circuits and behaviors via dopamine release from expansive, long range axonal projections. The elaborate cytoarchitecture of these neurons is embedded within complex brain tissue, making it difficult to access the neuronal proteome using conventional methods. Here, we demonstrate APEX2 proximity labeling within genetically targeted neurons in the mouse brain, enabling subcellular proteomics with cell type-specificity. By combining APEX2 biotinylation with mass spectrometry, we mapped the somatodendritic and axonal proteomes of midbrain dopaminergic neurons. Our dataset reveals the proteomic architecture underlying proteostasis, axonal metabolism, and neurotransmission in these neurons. We identify numerous proteins encoded by dopamine neuron-enriched genes in striatal dopaminergic axons, including ion channels with previously undescribed axonal localization. These proteomic datasets provide a resource for neuronal cell biology, and this approach can be readily adapted for study of other neural cell types.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset identifier PXD026229. Raw label-free quantification intensity values for proteomics data can be found in Figure 2 - source data 2. The scRNA-seq data analyzed are publicly available as GSE116470 (Saunders et al., 2018). High confidence DA neuron profiles used in this study are reported in Figure 5 - source data 3.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Benjamin D Hobson

    Depart of Systems Biology, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2745-5318
  2. Se Joon Choi

    New York State Psychiatric Institute, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eugene V Mosharov

    New York State Psychiatric Institute, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Rajesh K Soni

    Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4556-4358
  5. David Sulzer

    Department of Psychiatry, Columbia University Medical Center, New York, United States
    For correspondence
    ds43@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7632-0439
  6. Peter Sims

    Department of Systems Biology, Columbia University Medical Center, New York, United States
    For correspondence
    pas2182@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3921-4837

Funding

National Institutes of Health (F30DA047775)

  • Benjamin D Hobson

National Institutes of Health (R01NS095435)

  • David Sulzer

National Institutes of Health (R01DA007418)

  • David Sulzer

National Institutes of Health (R01MH122470)

  • David Sulzer

Michael J. Fox Foundation for Parkinson's Research (ASAP-000375)

  • David Sulzer
  • Peter Sims

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew B West, Duke University, United States

Ethics

Animal experimentation: All experiments were conducted according to NIH guidelines and approved by the Institutional Animal Care and Use Committees of Columbia University and the New York State Psychiatric Institute. Protocol numbers are NYSPI #1584 (Columbia University AABI2605) and NYSPI #1551 (Columbia University AABD8564).

Version history

  1. Preprint posted: June 1, 2021 (view preprint)
  2. Received: June 2, 2021
  3. Accepted: January 30, 2022
  4. Accepted Manuscript published: January 31, 2022 (version 1)
  5. Version of Record published: February 21, 2022 (version 2)

Copyright

© 2022, Hobson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,487
    views
  • 1,113
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin D Hobson
  2. Se Joon Choi
  3. Eugene V Mosharov
  4. Rajesh K Soni
  5. David Sulzer
  6. Peter Sims
(2022)
Subcellular proteomics of dopamine neurons in the mouse brain
eLife 11:e70921.
https://doi.org/10.7554/eLife.70921

Share this article

https://doi.org/10.7554/eLife.70921

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.