A novel immunopeptidomic-based pipeline for the generation of personalized oncolytic cancer vaccines

  1. Sara Feola
  2. Jacopo Chiaro
  3. Beatriz Martins
  4. Salvatore Russo
  5. Manlio Fusciello
  6. Erkko Ylösmäki
  7. Chiara Bonini
  8. Eliana Ruggiero
  9. Firas Hamdan
  10. Michaela Feodoroff
  11. Gabriella Antignani
  12. Tapani Viitala
  13. Sari Pesonen
  14. Mikaela Grönholm
  15. Rui MM Branca
  16. Janne Lehtiö
  17. Vincenzo Cerullo  Is a corresponding author
  1. University of Helsinki, Finland
  2. University Vita e Salute San Raffaele, Italy
  3. University of Helsinki, Finland
  4. Valo Therapeutics Oy, Finland
  5. Karolinska Institutet, Sweden
  6. Karolinska Institute, Sweden

Abstract

Beside the isolation and identification of MHC-I restricted peptides from the surface of cancer cells, one of the challenges is eliciting an effective anti-tumor CD8+ T cell mediated response as part of therapeutic cancer vaccine. Therefore, the establishment of a solid pipeline for the downstream selection of clinically relevant peptides and the subsequent creation of therapeutic cancer vaccines are of utmost importance. Indeed, the use of peptides for eliciting specific anti-tumor adaptive immunity is hindered by two main limitations: the efficient selection of the most optimal candidate peptides and the use of a highly immunogenic platform to combine with the peptides to induce effective tumor-specific adaptive immune responses. Here, we describe for the first time a streamlined pipeline for the generation of personalized cancer vaccines starting from the isolation and selection of the most immunogenic peptide candidates expressed on the tumor cells and ending in the generation of efficient therapeutic oncolytic cancer vaccines. This immunopeptidomics-based pipeline was carefully validated in a murine colon tumor model CT26. Specifically, we used state-of-the-art immunoprecipitation and mass spectrometric methodologies to isolate >8000 peptide targets from the CT26 tumor cell line. The selection of the target candidates was then based on two separate approaches: RNAseq analysis and the HEX software. The latter is a tool previously developed by Chiaro et al. (1), able to identify tumor antigens similar to pathogen antigens, in order to exploit molecular mimicry and tumor pathogen cross-reactive T-cells in cancer vaccine development. The generated list of candidates (twenty-six in total) was further tested in a functional characterization assay using interferon-g ELISpot (Enzyme-Linked Immunospot), reducing the number of candidates to six. These peptides were then tested in our previously described oncolytic cancer vaccine platform PeptiCRAd, a vaccine platform that combines an immunogenic oncolytic adenovirus (OAd) coated with tumor antigen peptides. In our work, PeptiCRAd was successfully used for the treatment of mice bearing CT26, controlling the primary malignant lesion and most importantly a secondary, non-treated, cancer lesion. These results confirmed the feasibility of applying the described pipeline for the selection of peptide candidates and generation of therapeutic oncolytic cancer vaccine, filling a gap in the field of cancer immunotherapy, and paving the way to translate our pipeline into human therapeutic approach.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD026463. The ligandome dataset is currently hidden but will be made public upon eventual acceptance of the current manuscript.Reviewer Account details for ligandome data accessing: https://www.ebi.ac.uk/pride/login PXD026463Username: reviewer_pxd026463@ebi.ac.ukPassword: oMUWIAw3

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sara Feola

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4012-4310
  2. Jacopo Chiaro

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  3. Beatriz Martins

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  4. Salvatore Russo

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  5. Manlio Fusciello

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  6. Erkko Ylösmäki

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  7. Chiara Bonini

    Experimental Hematology Unit, University Vita e Salute San Raffaele, Milan, Italy
    Competing interests
    No competing interests declared.
  8. Eliana Ruggiero

    Experimental Hematology Unit, University Vita e Salute San Raffaele, Milan, Italy
    Competing interests
    No competing interests declared.
  9. Firas Hamdan

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  10. Michaela Feodoroff

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6094-9838
  11. Gabriella Antignani

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  12. Tapani Viitala

    Pharmaceutical Biophysics Research Group, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9074-9450
  13. Sari Pesonen

    Valo Therapeutics Oy, Helsinki, Finland
    Competing interests
    Sari Pesonen, is an employee and a shareholder at VALO Therapeutics.
  14. Mikaela Grönholm

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  15. Rui MM Branca

    Department of Oncology-Pathology, Karolinska Institutet, stockholm, Sweden
    Competing interests
    No competing interests declared.
  16. Janne Lehtiö

    Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8100-9562
  17. Vincenzo Cerullo

    ImmunoVirothearpy Lab, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
    For correspondence
    vincenzo.cerullo@helsinki.fi
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4901-3796

Funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ping-Chih Ho, Ludwig Institute for Cancer Research, Switzerland

Ethics

Animal experimentation: All animal experiments were reviewed and approved by the Experimental Animal Committee of the University of Helsinki and the Provincial Government of Southern Finland (license number ESAVI/11895/2019).4-6 weeks old female Balb/cOlaHsd mice were obtained from Envigo (Laboratory, Bar Harbor, Maine UK).

Version history

  1. Preprint posted: June 9, 2021 (view preprint)
  2. Received: June 11, 2021
  3. Accepted: March 1, 2022
  4. Accepted Manuscript published: March 22, 2022 (version 1)
  5. Version of Record published: April 7, 2022 (version 2)

Copyright

© 2022, Feola et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,449
    views
  • 649
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara Feola
  2. Jacopo Chiaro
  3. Beatriz Martins
  4. Salvatore Russo
  5. Manlio Fusciello
  6. Erkko Ylösmäki
  7. Chiara Bonini
  8. Eliana Ruggiero
  9. Firas Hamdan
  10. Michaela Feodoroff
  11. Gabriella Antignani
  12. Tapani Viitala
  13. Sari Pesonen
  14. Mikaela Grönholm
  15. Rui MM Branca
  16. Janne Lehtiö
  17. Vincenzo Cerullo
(2022)
A novel immunopeptidomic-based pipeline for the generation of personalized oncolytic cancer vaccines
eLife 11:e71156.
https://doi.org/10.7554/eLife.71156

Share this article

https://doi.org/10.7554/eLife.71156

Further reading

    1. Medicine
    Jinjing Chen, Ruoyu Wang ... Jongsook Kemper
    Research Article

    The nuclear receptor, farnesoid X receptor (FXR/NR1H4), is increasingly recognized as a promising drug target for metabolic diseases, including nonalcoholic steatohepatitis (NASH). Protein-coding genes regulated by FXR are well known, but whether FXR also acts through regulation of long non-coding RNAs (lncRNAs), which vastly outnumber protein-coding genes, remains unknown. Utilizing RNA-seq and global run-on sequencing (GRO-seq) analyses in mouse liver, we found that FXR activation affects the expression of many RNA transcripts from chromatin regions bearing enhancer features. Among these we discovered a previously unannotated liver-enriched enhancer-derived lncRNA (eRNA), termed FXR-induced non-coding RNA (Fincor). We show that Fincor is specifically induced by the hammerhead-type FXR agonists, including GW4064 and tropifexor. CRISPR/Cas9-mediated liver-specific knockdown of Fincor in dietary NASH mice reduced the beneficial effects of tropifexor, an FXR agonist currently in clinical trials for NASH and primary biliary cholangitis (PBC), indicating that amelioration of liver fibrosis and inflammation in NASH treatment by tropifexor is mediated in part by Fincor. Overall, our findings highlight that pharmacological activation of FXR by hammerhead-type agonists induces a novel eRNA, Fincor, contributing to the amelioration of NASH in mice. Fincor may represent a new drug target for addressing metabolic disorders, including NASH.

    1. Cell Biology
    2. Medicine
    Chun Wang, Khushpreet Kaur ... Gabriel Mbalaviele
    Research Article

    Chemotherapy is a widely used treatment for a variety of solid and hematological malignancies. Despite its success in improving the survival rate of cancer patients, chemotherapy causes significant toxicity to multiple organs, including the skeleton, but the underlying mechanisms have yet to be elucidated. Using tumor-free mouse models, which are commonly used to assess direct off-target effects of anti-neoplastic therapies, we found that doxorubicin caused massive bone loss in wild-type mice, a phenotype associated with increased number of osteoclasts, leukopenia, elevated serum levels of danger-associated molecular patterns (DAMPs; e.g. cell-free DNA and ATP) and cytokines (e.g. IL-1β and IL-18). Accordingly, doxorubicin activated the absent in melanoma (AIM2) and NLR family pyrin domain containing 3 (NLRP3) inflammasomes in macrophages and neutrophils, causing inflammatory cell death pyroptosis and NETosis, which correlated with its leukopenic effects. Moreover, the effects of this chemotherapeutic agent on cytokine secretion, cell demise, and bone loss were attenuated to various extent in conditions of AIM2 and/or NLRP3 insufficiency. Thus, we found that inflammasomes are key players in bone loss caused by doxorubicin, a finding that may inspire the development of a tailored adjuvant therapy that preserves the quality of this tissue in patients treated with this class of drugs.