A novel immunopeptidomic-based pipeline for the generation of personalized oncolytic cancer vaccines

  1. Sara Feola
  2. Jacopo Chiaro
  3. Beatriz Martins
  4. Salvatore Russo
  5. Manlio Fusciello
  6. Erkko Ylösmäki
  7. Chiara Bonini
  8. Eliana Ruggiero
  9. Firas Hamdan
  10. Michaela Feodoroff
  11. Gabriella Antignani
  12. Tapani Viitala
  13. Sari Pesonen
  14. Mikaela Grönholm
  15. Rui MM Branca
  16. Janne Lehtiö
  17. Vincenzo Cerullo  Is a corresponding author
  1. University of Helsinki, Finland
  2. University Vita e Salute San Raffaele, Italy
  3. University of Helsinki, Finland
  4. Valo Therapeutics Oy, Finland
  5. Karolinska Institutet, Sweden
  6. Karolinska Institute, Sweden

Abstract

Beside the isolation and identification of MHC-I restricted peptides from the surface of cancer cells, one of the challenges is eliciting an effective anti-tumor CD8+ T cell mediated response as part of therapeutic cancer vaccine. Therefore, the establishment of a solid pipeline for the downstream selection of clinically relevant peptides and the subsequent creation of therapeutic cancer vaccines are of utmost importance. Indeed, the use of peptides for eliciting specific anti-tumor adaptive immunity is hindered by two main limitations: the efficient selection of the most optimal candidate peptides and the use of a highly immunogenic platform to combine with the peptides to induce effective tumor-specific adaptive immune responses. Here, we describe for the first time a streamlined pipeline for the generation of personalized cancer vaccines starting from the isolation and selection of the most immunogenic peptide candidates expressed on the tumor cells and ending in the generation of efficient therapeutic oncolytic cancer vaccines. This immunopeptidomics-based pipeline was carefully validated in a murine colon tumor model CT26. Specifically, we used state-of-the-art immunoprecipitation and mass spectrometric methodologies to isolate >8000 peptide targets from the CT26 tumor cell line. The selection of the target candidates was then based on two separate approaches: RNAseq analysis and the HEX software. The latter is a tool previously developed by Chiaro et al. (1), able to identify tumor antigens similar to pathogen antigens, in order to exploit molecular mimicry and tumor pathogen cross-reactive T-cells in cancer vaccine development. The generated list of candidates (twenty-six in total) was further tested in a functional characterization assay using interferon-g ELISpot (Enzyme-Linked Immunospot), reducing the number of candidates to six. These peptides were then tested in our previously described oncolytic cancer vaccine platform PeptiCRAd, a vaccine platform that combines an immunogenic oncolytic adenovirus (OAd) coated with tumor antigen peptides. In our work, PeptiCRAd was successfully used for the treatment of mice bearing CT26, controlling the primary malignant lesion and most importantly a secondary, non-treated, cancer lesion. These results confirmed the feasibility of applying the described pipeline for the selection of peptide candidates and generation of therapeutic oncolytic cancer vaccine, filling a gap in the field of cancer immunotherapy, and paving the way to translate our pipeline into human therapeutic approach.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD026463. The ligandome dataset is currently hidden but will be made public upon eventual acceptance of the current manuscript.Reviewer Account details for ligandome data accessing: https://www.ebi.ac.uk/pride/login PXD026463Username: reviewer_pxd026463@ebi.ac.ukPassword: oMUWIAw3

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sara Feola

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4012-4310
  2. Jacopo Chiaro

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  3. Beatriz Martins

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  4. Salvatore Russo

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  5. Manlio Fusciello

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  6. Erkko Ylösmäki

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  7. Chiara Bonini

    Experimental Hematology Unit, University Vita e Salute San Raffaele, Milan, Italy
    Competing interests
    No competing interests declared.
  8. Eliana Ruggiero

    Experimental Hematology Unit, University Vita e Salute San Raffaele, Milan, Italy
    Competing interests
    No competing interests declared.
  9. Firas Hamdan

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  10. Michaela Feodoroff

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6094-9838
  11. Gabriella Antignani

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  12. Tapani Viitala

    Pharmaceutical Biophysics Research Group, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9074-9450
  13. Sari Pesonen

    Valo Therapeutics Oy, Helsinki, Finland
    Competing interests
    Sari Pesonen, is an employee and a shareholder at VALO Therapeutics.
  14. Mikaela Grönholm

    Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  15. Rui MM Branca

    Department of Oncology-Pathology, Karolinska Institutet, stockholm, Sweden
    Competing interests
    No competing interests declared.
  16. Janne Lehtiö

    Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8100-9562
  17. Vincenzo Cerullo

    ImmunoVirothearpy Lab, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
    For correspondence
    vincenzo.cerullo@helsinki.fi
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4901-3796

Funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ping-Chih Ho, Ludwig Institute for Cancer Research, Switzerland

Ethics

Animal experimentation: All animal experiments were reviewed and approved by the Experimental Animal Committee of the University of Helsinki and the Provincial Government of Southern Finland (license number ESAVI/11895/2019).4-6 weeks old female Balb/cOlaHsd mice were obtained from Envigo (Laboratory, Bar Harbor, Maine UK).

Version history

  1. Preprint posted: June 9, 2021 (view preprint)
  2. Received: June 11, 2021
  3. Accepted: March 1, 2022
  4. Accepted Manuscript published: March 22, 2022 (version 1)
  5. Version of Record published: April 7, 2022 (version 2)

Copyright

© 2022, Feola et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,630
    views
  • 677
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara Feola
  2. Jacopo Chiaro
  3. Beatriz Martins
  4. Salvatore Russo
  5. Manlio Fusciello
  6. Erkko Ylösmäki
  7. Chiara Bonini
  8. Eliana Ruggiero
  9. Firas Hamdan
  10. Michaela Feodoroff
  11. Gabriella Antignani
  12. Tapani Viitala
  13. Sari Pesonen
  14. Mikaela Grönholm
  15. Rui MM Branca
  16. Janne Lehtiö
  17. Vincenzo Cerullo
(2022)
A novel immunopeptidomic-based pipeline for the generation of personalized oncolytic cancer vaccines
eLife 11:e71156.
https://doi.org/10.7554/eLife.71156

Share this article

https://doi.org/10.7554/eLife.71156

Further reading

    1. Medicine
    Ruijie Zeng, Yuying Ma ... Hao Chen
    Research Article

    Background:

    Adverse effects of proton pump inhibitors (PPIs) have raised wide concerns. The association of PPIs with influenza is unexplored, while that with pneumonia or COVID-19 remains controversial. Our study aims to evaluate whether PPI use increases the risks of these respiratory infections.

    Methods:

    The current study included 160,923 eligible participants at baseline who completed questionnaires on medication use, which included PPI or histamine-2 receptor antagonist (H2RA), from the UK Biobank. Cox proportional hazards regression and propensity score-matching analyses were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs).

    Results:

    Comparisons with H2RA users were tested. PPI use was associated with increased risks of developing influenza (HR 1.32, 95% CI 1.12–1.56) and pneumonia (hazard ratio [HR] 1.42, 95% confidence interval [CI] 1.26–1.59). In contrast, the risk of COVID-19 infection was not significant with regular PPI use (HR 1.08, 95% CI 0.99–1.17), while the risks of severe COVID-19 (HR 1.19. 95% CI 1.11–1.27) and mortality (HR 1.37. 95% CI 1.29–1.46) were increased. However, when compared with H2RA users, PPI users were associated with a higher risk of influenza (HR 1.74, 95% CI 1.19–2.54), but the risks with pneumonia or COVID-19-related outcomes were not evident.

    Conclusions:

    PPI users are associated with increased risks of influenza, pneumonia, as well as COVID-19 severity and mortality compared to non-users, while the effects on pneumonia or COVID-19-related outcomes under PPI use were attenuated when compared to the use of H2RAs. Appropriate use of PPIs based on comprehensive evaluation is required.

    Funding:

    This work is supported by the National Natural Science Foundation of China (82171698, 82170561, 81300279, 81741067, 82100238), the Program for High-level Foreign Expert Introduction of China (G2022030047L), the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province (2021B1515020003), the Guangdong Basic and Applied Basic Research Foundation (2022A1515012081), the Foreign Distinguished Teacher Program of Guangdong Science and Technology Department (KD0120220129), the Climbing Program of Introduced Talents and High-level Hospital Construction Project of Guangdong Provincial People’s Hospital (DFJH201923, DFJH201803, KJ012019099, KJ012021143, KY012021183), and in part by VA Clinical Merit and ASGE clinical research funds (FWL).

    1. Medicine
    Vitaly Ryu, Anisa Azatovna Gumerova ... Mone Zaidi
    Tools and Resources Updated

    There is clear evidence that the sympathetic nervous system (SNS) mediates bone metabolism. Histological studies show abundant SNS innervation of the periosteum and bone marrow–these nerves consist of noradrenergic fibers that immunostain for tyrosine hydroxylase, dopamine beta-hydroxylase, or neuropeptide Y. Nonetheless, the brain sites that send efferent SNS outflow to the bone have not yet been characterized. Using pseudorabies (PRV) viral transneuronal tracing, we report, for the first time, the identification of central SNS outflow sites that innervate bone. We find that the central SNS outflow to bone originates from 87 brain nuclei, sub-nuclei, and regions of six brain divisions, namely the midbrain and pons, hypothalamus, hindbrain medulla, forebrain, cerebral cortex, and thalamus. We also find that certain sites, such as the raphe magnus (RMg) of the medulla and periaqueductal gray (PAG) of the midbrain, display greater degrees of PRV152 infection, suggesting that there is considerable site-specific variation in the levels of central SNS outflow to the bone. This comprehensive compendium illustrating the central coding and control of SNS efferent signals to bone should allow for a greater understanding of the neural regulation of bone metabolism, and importantly and of clinical relevance, mechanisms for central bone pain.