Genetically engineered insects with sex-selection and genetic incompatibility enable population suppression

  1. Ambuj Upadhyay
  2. Nathan R Feltman
  3. Adam Sychla
  4. Anna Janzen
  5. Siba R Das
  6. Maciej Maselko
  7. Michael Smanski  Is a corresponding author
  1. University of Minnesota, United States
  2. Macquarie University, Australia

Abstract

Engineered Genetic Incompatibility (EGI) is a method to create species-like barriers to sexual reproduction. It has applications in pest control that mimic Sterile Insect Technique when only EGI males are released. This can be facilitated by introducing conditional female-lethality to EGI strains to generate a sex-sorting incompatible male system (SSIMS). Here, we demonstrate a proof of concept by combining tetracycline-controlled female lethality constructs with a pyramus-targeting EGI line in the model insect Drosophila melanogaster. We show that both functions (incompatibility and sex-sorting) are robustly maintained in the SSIMS line and that this approach is effective for population suppression in cage experiments. Further we show that SSIMS males remain competitive with wild-type males for reproduction with wild-type females, including at the level of sperm competition.

Data availability

All data is available in the manuscript

Article and author information

Author details

  1. Ambuj Upadhyay

    Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States
    Competing interests
    Ambuj Upadhyay, Inventor of filed patents (PCT/US2019/059826).
  2. Nathan R Feltman

    Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
    Competing interests
    Nathan R Feltman, Inventor of filed patents.(PCT/US2019/059826).
  3. Adam Sychla

    Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
    Competing interests
    No competing interests declared.
  4. Anna Janzen

    Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
    Competing interests
    No competing interests declared.
  5. Siba R Das

    Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
    Competing interests
    Siba R Das, Inventor on filed IP, co-founder of Novoclade. (PCT/US2019/059826).
  6. Maciej Maselko

    Macquarie University, Sydney, Australia
    Competing interests
    Maciej Maselko, Inventor of filed IP; co-founder of Novoclade. (PCT/US2019/059826).
  7. Michael Smanski

    Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
    For correspondence
    smanski@umn.edu
    Competing interests
    Michael Smanski, Inventor on filed patents and co-founder of Novoclade. (PCT/US2019/059826).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6029-8326

Funding

Minnesota Invasive Terrestrial Plants and Pests Center, University of Minnesota

  • Michael Smanski

Defense Advanced Research Projects Agency

  • Michael Smanski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Philipp W Messer, Cornell University, United States

Ethics

Animal experimentation: Work with invertebrates (e.g. D. melanogaster) is exempt from the University of Minnesota's IACUC research oversight, however all work was approved by UMN's Institutional Biosafety Committee.

Version history

  1. Preprint posted: June 11, 2021 (view preprint)
  2. Received: June 12, 2021
  3. Accepted: January 31, 2022
  4. Accepted Manuscript published: February 2, 2022 (version 1)
  5. Version of Record published: February 21, 2022 (version 2)

Copyright

© 2022, Upadhyay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,685
    views
  • 219
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ambuj Upadhyay
  2. Nathan R Feltman
  3. Adam Sychla
  4. Anna Janzen
  5. Siba R Das
  6. Maciej Maselko
  7. Michael Smanski
(2022)
Genetically engineered insects with sex-selection and genetic incompatibility enable population suppression
eLife 11:e71230.
https://doi.org/10.7554/eLife.71230

Share this article

https://doi.org/10.7554/eLife.71230

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.

    1. Genetics and Genomics
    Pianpian Zhao, Zhifeng Sheng ... Hou-Feng Zheng
    Research Article

    The ‘diabetic bone paradox’ suggested that type 2 diabetes (T2D) patients would have higher areal bone mineral density (BMD) but higher fracture risk than individuals without T2D. In this study, we found that the genetically predicted T2D was associated with higher BMD and lower risk of fracture in both weighted genetic risk score (wGRS) and two-sample Mendelian randomization (MR) analyses. We also identified ten genomic loci shared between T2D and fracture, with the top signal at SNP rs4580892 in the intron of gene RSPO3. And the higher expression in adipose subcutaneous and higher protein level in plasma of RSPO3 were associated with increased risk of T2D, but decreased risk of fracture. In the prospective study, T2D was observed to be associated with higher risk of fracture, but BMI mediated 30.2% of the protective effect. However, when stratified by the T2D-related risk factors for fracture, we observed that the effect of T2D on the risk of fracture decreased when the number of T2D-related risk factors decreased, and the association became non-significant if the T2D patients carried none of the risk factors. In conclusion, the genetically determined T2D might not be associated with higher risk of fracture. And the shared genetic architecture between T2D and fracture suggested a top signal around RSPO3 gene. The observed effect size of T2D on fracture risk decreased if the T2D-related risk factors could be eliminated. Therefore, it is important to manage the complications of T2D to prevent the risk of fracture.