Genetically engineered insects with sex-selection and genetic incompatibility enable population suppression

  1. Ambuj Upadhyay
  2. Nathan R Feltman
  3. Adam Sychla
  4. Anna Janzen
  5. Siba R Das
  6. Maciej Maselko
  7. Michael Smanski  Is a corresponding author
  1. University of Minnesota, United States
  2. Macquarie University, Australia

Abstract

Engineered Genetic Incompatibility (EGI) is a method to create species-like barriers to sexual reproduction. It has applications in pest control that mimic Sterile Insect Technique when only EGI males are released. This can be facilitated by introducing conditional female-lethality to EGI strains to generate a sex-sorting incompatible male system (SSIMS). Here, we demonstrate a proof of concept by combining tetracycline-controlled female lethality constructs with a pyramus-targeting EGI line in the model insect Drosophila melanogaster. We show that both functions (incompatibility and sex-sorting) are robustly maintained in the SSIMS line and that this approach is effective for population suppression in cage experiments. Further we show that SSIMS males remain competitive with wild-type males for reproduction with wild-type females, including at the level of sperm competition.

Data availability

All data is available in the manuscript

Article and author information

Author details

  1. Ambuj Upadhyay

    Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States
    Competing interests
    Ambuj Upadhyay, Inventor of filed patents (PCT/US2019/059826).
  2. Nathan R Feltman

    Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
    Competing interests
    Nathan R Feltman, Inventor of filed patents.(PCT/US2019/059826).
  3. Adam Sychla

    Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
    Competing interests
    No competing interests declared.
  4. Anna Janzen

    Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
    Competing interests
    No competing interests declared.
  5. Siba R Das

    Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
    Competing interests
    Siba R Das, Inventor on filed IP, co-founder of Novoclade. (PCT/US2019/059826).
  6. Maciej Maselko

    Macquarie University, Sydney, Australia
    Competing interests
    Maciej Maselko, Inventor of filed IP; co-founder of Novoclade. (PCT/US2019/059826).
  7. Michael Smanski

    Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, United States
    For correspondence
    smanski@umn.edu
    Competing interests
    Michael Smanski, Inventor on filed patents and co-founder of Novoclade. (PCT/US2019/059826).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6029-8326

Funding

Minnesota Invasive Terrestrial Plants and Pests Center, University of Minnesota

  • Michael Smanski

Defense Advanced Research Projects Agency

  • Michael Smanski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Work with invertebrates (e.g. D. melanogaster) is exempt from the University of Minnesota's IACUC research oversight, however all work was approved by UMN's Institutional Biosafety Committee.

Copyright

© 2022, Upadhyay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,813
    views
  • 234
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ambuj Upadhyay
  2. Nathan R Feltman
  3. Adam Sychla
  4. Anna Janzen
  5. Siba R Das
  6. Maciej Maselko
  7. Michael Smanski
(2022)
Genetically engineered insects with sex-selection and genetic incompatibility enable population suppression
eLife 11:e71230.
https://doi.org/10.7554/eLife.71230

Share this article

https://doi.org/10.7554/eLife.71230

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Ignacy Czajewski, Bijayalaxmi Swain ... Daan MF van Aalten
    Research Article

    O-GlcNAcylation is an essential intracellular protein modification mediated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Recently, missense mutations in OGT have been linked to intellectual disability, indicating that this modification is important for the development and functioning of the nervous system. However, the processes that are most sensitive to perturbations in O-GlcNAcylation remain to be identified. Here, we uncover quantifiable phenotypes in the fruit fly Drosophila melanogaster carrying a patient-derived OGT mutation in the catalytic domain. Hypo-O-GlcNAcylation leads to defects in synaptogenesis and reduced sleep stability. Both these phenotypes can be partially rescued by genetically or chemically targeting OGA, suggesting that a balance of OGT/OGA activity is required for normal neuronal development and function.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Michael James Chambers, Sophia B Scobell, Meru J Sadhu
    Research Article

    Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued.  However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface’s critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.