Modulation of pulsatile GnRH dynamics across the ovarian cycle via changes in the network excitability and basal activity of the arcuate kisspeptin network

  1. Margaritis Voliotis  Is a corresponding author
  2. Xiao Feng Li
  3. Ross Alexander De Burgh
  4. Geffen Lass
  5. Deyana Ivanova
  6. Caitlin McIntyre
  7. Kevin O’Byrne
  8. Krasimira Tsaneva-Atanasova
  1. University of Exeter, United Kingdom
  2. King's College London, United Kingdom
  3. Exeter University, United Kingdom

Abstract

Pulsatile GnRH release is essential for normal reproductive function. Kisspeptin secreting neurons found in the arcuate nucleus, known as KNDy neurons for co-expressing neurokinin B, and dynorphin, drive pulsatile GnRH release. Furthermore, gonadal steroids regulate GnRH pulsatile dynamics across the ovarian cycle by altering KNDy neurons' signalling properties. However, the precise mechanism of regulation remains mostly unknown. To better understand these mechanisms we start by perturbing the KNDy system at different stages of the estrous cycle using optogenetics. We find that optogenetic stimulation of KNDy neurons stimulates pulsatile GnRH/LH secretion in estrous mice but inhibits it in diestrous mice. These in-vivo results in combination with mathematical modelling suggest that the transition between estrus and diestrus is underpinned by well-orchestrated changes in neuropeptide signalling and in the excitability of the KNDy population controlled via glutamate signalling. Guided by model predictions, we show that blocking glutamate signalling in diestrous animals inhibits LH pulses, and that optic stimulation of the KNDy population mitigates this inhibition. In estrous mice, disruption of glutamate signalling inhibits pulses generated via sustained low-frequency optic stimulation of the KNDy population, supporting the idea that the level of network excitability is critical for pulse generation. Our results reconcile previous puzzling findings regarding the estradiol-dependent effect that several neuromodulators have on the GnRH pulse generator dynamics. Therefore, we anticipate our model to be a cornerstone for a more quantitative understanding of the pathways via which gonadal steroids regulate GnRH pulse generator dynamics. Finally, our results could inform useful repurposing of drugs targeting the glutamate system in reproductive therapy.

Data availability

The data and the code are publicly available via the following open access repositories:http://doi.org/doi:10.18742/RDM01-750https://git.exeter.ac.uk/mv286/kndy-parameter-inference.git

The following data sets were generated

Article and author information

Author details

  1. Margaritis Voliotis

    Mathematics, University of Exeter, Exeter, United Kingdom
    For correspondence
    m.voliotis@exeter.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6488-7198
  2. Xiao Feng Li

    King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Ross Alexander De Burgh

    King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Geffen Lass

    King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Deyana Ivanova

    King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Caitlin McIntyre

    King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Kevin O’Byrne

    King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Krasimira Tsaneva-Atanasova

    Department of Mathematics and Living Systems Institute, Exeter University, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6294-7051

Funding

Engineering and Physical Sciences Research Council (EP/N014391/1)

  • Margaritis Voliotis
  • Krasimira Tsaneva-Atanasova

Biotechnology and Biological Sciences Research Council (BB/S000550/1)

  • Margaritis Voliotis
  • Xiao Feng Li
  • Kevin O’Byrne
  • Krasimira Tsaneva-Atanasova

Biotechnology and Biological Sciences Research Council (BB/S001255/1)

  • Margaritis Voliotis
  • Xiao Feng Li
  • Kevin O’Byrne
  • Krasimira Tsaneva-Atanasova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures performed were approved by the Animal Welfare and Ethical Review Body Committee at King's College London (PP4006193 ) and conducted in accordance with the UK Home Office Regulations.

Copyright

© 2021, Voliotis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Margaritis Voliotis
  2. Xiao Feng Li
  3. Ross Alexander De Burgh
  4. Geffen Lass
  5. Deyana Ivanova
  6. Caitlin McIntyre
  7. Kevin O’Byrne
  8. Krasimira Tsaneva-Atanasova
(2021)
Modulation of pulsatile GnRH dynamics across the ovarian cycle via changes in the network excitability and basal activity of the arcuate kisspeptin network
eLife 10:e71252.
https://doi.org/10.7554/eLife.71252

Share this article

https://doi.org/10.7554/eLife.71252

Further reading

    1. Neuroscience
    Jakob Rupert, Dragomir Milovanovic
    Insight

    By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.