Maturation of persistent and hyperpolarization-activated inward currents shapes the differential activation of motoneuron subtypes during postnatal development

  1. Simon A Sharples
  2. Gareth B Miles  Is a corresponding author
  1. University of St Andrews, United Kingdom

Abstract

The size principle underlies the orderly recruitment of motor units; however, motoneuron size is a poor predictor of recruitment amongst functionally defined motoneuron subtypes. Whilst intrinsic properties are key regulators of motoneuron recruitment, the underlying currents involved are not well defined. Whole-cell patch-clamp electrophysiology was deployed to study intrinsic properties, and the underlying currents, that contribute to the differential activation of delayed and immediate firing motoneuron subtypes. Motoneurons were studied during the first three postnatal weeks in mice to identify key properties that contribute to rheobase and may be important to establish orderly recruitment. We find that delayed and immediate firing motoneurons are functionally homogeneous during the first postnatal week and are activated based on size, irrespective of subtype. The rheobase of motoneuron subtypes become staggered during the second postnatal week, which coincides with the differential maturation of passive and active properties, particularly persistent inward currents. Rheobase of delayed firing motoneurons increases further in the third postnatal week due to the development of a prominent resting hyperpolarization-activated inward current. Our results suggest that motoneuron recruitment is multifactorial, with recruitment order established during postnatal development through the differential maturation of passive properties and sequential integration of persistent and hyperpolarization-activated inward currents.

Data availability

Source data included in all figures (Figures 2-6 + Supplemental Figure 1 2), and the Supplemental Tables have been uploaded as excel files with the manuscript.

Article and author information

Author details

  1. Simon A Sharples

    School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Gareth B Miles

    School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
    For correspondence
    gbm4@st-andrews.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8624-4625

Funding

Royal Society (NIF/R1/180091)

  • Simon A Sharples

Natural Sciences and Engineering Research Council of Canada (NSERC-PDF-517295-2018)

  • Simon A Sharples

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures performed were conducted in accordancewith the UK Animals (Scientific Procedures) Act 1986 and were approved by the University of StAndrews Animal Welfare Ethics Committee. (PPL: P6F7B721E).

Copyright

© 2021, Sharples & Miles

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,234
    views
  • 186
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.71385

Further reading

    1. Neuroscience
    Jakob Rupert, Dragomir Milovanovic
    Insight

    By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.

    1. Neuroscience
    Yi-Yun Ho, Qiuwei Yang ... Melissa R Warden
    Research Article

    The infralimbic cortex (IL) is essential for flexible behavioral responses to threatening environmental events. Reactive behaviors such as freezing or flight are adaptive in some contexts, but in others a strategic avoidance behavior may be more advantageous. IL has been implicated in avoidance, but the contribution of distinct IL neural subtypes with differing molecular identities and wiring patterns is poorly understood. Here, we study IL parvalbumin (PV) interneurons in mice as they engage in active avoidance behavior, a behavior in which mice must suppress freezing in order to move to safety. We find that activity in inhibitory PV neurons increases during movement to avoid the shock in this behavioral paradigm, and that PV activity during movement emerges after mice have experienced a single shock, prior to learning avoidance. PV neural activity does not change during movement toward cued rewards or during general locomotion in the open field, behavioral paradigms where freezing does not need to be suppressed to enable movement. Optogenetic suppression of PV neurons increases the duration of freezing and delays the onset of avoidance behavior, but does not affect movement toward rewards or general locomotion. These data provide evidence that IL PV neurons support strategic avoidance behavior by suppressing freezing.