History of winning and hierarchy landscape influence stress susceptibility in mice

  1. Katherine B LeClair
  2. Kenny L Chan
  3. Manuella P Kaster
  4. Lyonna F Parise
  5. Charles Joseph Burnett
  6. Scott Russo  Is a corresponding author
  1. Icahn School of Medicine at Mount Sinai, United States
  2. Federal University of Santa Catarina, Brazil

Abstract

Social hierarchy formation is strongly evolutionarily conserved. Across species, rank within social hierarchy has large effects on health and behavior. To investigate the relationship between social rank and stress susceptibility, we exposed ranked male and female mice to social and non-social stressors and manipulated social hierarchy position. We found that rank predicts same sex social stress outcomes: dominance in males and females confers resilience while subordination confers susceptibility. Pre-existing rank does not predict non-social stress outcomes in females and weakly does so in males, but rank emerging under stress conditions reveals social interaction deficits in male and female subordinates. Both history of winning and rank of cage mates affect stress susceptibility in males: rising to the top rank through high mobility confers resilience and mice that lose dominance lose stress resilience, though gaining dominance over a subordinate animal does not confer resilience. Overall, we have demonstrated a relationship between social status and stress susceptibility, particularly when taking into account individual history of winning and the overall hierarchy landscape in male and female mice.

Data availability

All data generated or analyzed during this study are included in the manuscript.

Article and author information

Author details

  1. Katherine B LeClair

    Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kenny L Chan

    Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Manuella P Kaster

    Federal University of Santa Catarina, Santa Catarina, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Lyonna F Parise

    Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Charles Joseph Burnett

    Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Scott Russo

    Icahn School of Medicine at Mount Sinai, New York, United States
    For correspondence
    scott.russo@mssm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6470-1805

Funding

National Institutes of Health (R01MH114882)

  • Scott Russo

National Institutes of Health (R01MH127820)

  • Scott Russo

National Institutes of Health (R01MH104559)

  • Scott Russo

CAPES-Brazil (Visiting Researcher Fellowship)

  • Manuella P Kaster

Canadian Institutes of Health Research (Postdoctoral Fellowship,201811MFE-414896-231226)

  • Kenny L Chan

Leon Levy Foundation (Postdoctoral Fellowship)

  • Lyonna F Parise

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were approved by the Icahn School of Medicine at Mount SinaiInstitutional Animal Care and Use Committee (Protocol #: LA10-00266 to S.J.R.)

Copyright

© 2021, LeClair et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,497
    views
  • 396
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katherine B LeClair
  2. Kenny L Chan
  3. Manuella P Kaster
  4. Lyonna F Parise
  5. Charles Joseph Burnett
  6. Scott Russo
(2021)
History of winning and hierarchy landscape influence stress susceptibility in mice
eLife 10:e71401.
https://doi.org/10.7554/eLife.71401

Share this article

https://doi.org/10.7554/eLife.71401

Further reading

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.