Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity

  1. Anastassios Karagiannis
  2. Thierry Gallopin
  3. Alexandre Lacroix
  4. Fabrice Plaisier
  5. Juliette Piquet
  6. Hélène Geoffroy
  7. Régine Hepp
  8. Jérémie Naudé
  9. Benjamin Le Gac
  10. Richard Egger
  11. Bertrand Lambolez
  12. Dongdong Li
  13. Jean Rossier
  14. Jochen F Staiger
  15. Hiromi Imamura
  16. Susumu Seino
  17. Jochen Roeper
  18. Bruno Cauli  Is a corresponding author
  1. CNRS, INSERM, Sorbonne Université, France
  2. CNRS, ESPCI Paris, France
  3. Goethe University Frankfurt, Germany
  4. Sorbonne Université, INSERM, CNRS, France
  5. Georg-August-University Goettingen, Germany
  6. Kyoto University, Japan
  7. Kobe University Graduate School of Medicine, Japan

Abstract

Glucose is the mandatory fuel for the brain, yet the relative contribution of glucose and lactate for neuronal energy metabolism is unclear. We found that increased lactate, but not glucose concentration, enhances the spiking activity of neurons of the cerebral cortex. Enhanced spiking was dependent on ATP-sensitive potassium (KATP) channels formed with KCNJ11 and ABCC8 subunits, which we show are functionally expressed in most neocortical neuronal types. We also demonstrate the ability of cortical neurons to take-up and metabolize lactate. We further reveal that ATP is produced by cortical neurons largely via oxidative phosphorylation and only modestly by glycolysis. Our data demonstrate that in active neurons, lactate is preferred to glucose as an energy substrate, and that lactate metabolism shapes neuronal activity in the neocortex through KATP channels. Our results highlight the importance of metabolic crosstalk between neurons and astrocytes for brain function.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 to 6.

Article and author information

Author details

  1. Anastassios Karagiannis

    CNRS, INSERM, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Thierry Gallopin

    Brain Plasticity Unit, CNRS UMR 8249, CNRS, ESPCI Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexandre Lacroix

    CNRS, INSERM, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabrice Plaisier

    CNRS, INSERM, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Juliette Piquet

    CNRS, INSERM, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Hélène Geoffroy

    Brain Plasticity Unit, CNRS UMR 8249, CNRS, ESPCI Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Régine Hepp

    CNRS, INSERM, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Jérémie Naudé

    CNRS, INSERM, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5781-6498
  9. Benjamin Le Gac

    CNRS, INSERM, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Richard Egger

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Bertrand Lambolez

    Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0653-480X
  12. Dongdong Li

    CNRS, INSERM, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Jean Rossier

    CNRS, INSERM, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1821-2135
  14. Jochen F Staiger

    Institute for Neuroanatomy, Georg-August-University Goettingen, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Hiromi Imamura

    Graduate School of Biostudies, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1896-0443
  16. Susumu Seino

    Kobe University Graduate School of Medicine, Hyogo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  17. Jochen Roeper

    Institute for Neurophysiology, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2145-8742
  18. Bruno Cauli

    CNRS, INSERM, Sorbonne Université, Paris, France
    For correspondence
    bruno.cauli@upmc.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1471-4621

Funding

Human Frontier Science Program (RGY0070/2007)

  • Bruno Cauli

Agence Nationale de la Recherche (ANR 2011 MALZ 003 01)

  • Bruno Cauli

Fondation pour la Recherche Médicale (FDT20100920106)

  • Anastassios Karagiannis

Fondation pour la Recherche sur Alzheimer

  • Benjamin Le Gac

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Wistar rats, C57BL/6RJ or Kcnj11-/- (B6.129P2-Kcnj11tm1Sse, backcrossed into C57BL6 over six generations) mice were used for all experiments in accordance with French regulations (Code Rural R214/87 to R214/130) and conformed to the ethical guidelines of both the directive 2010/63/EU of the European Parliament and of the Council and the French National Charter on the ethics of animal experimentation. A maximum of 3 rats or 5 mice were housed per cage and single animal housing was avoided. Male rats and mice of both genders were housed on a 12-hour light/dark cycle in a temperature-controlled (21-25{degree sign}C) room and were given food and water ad libitum. Animals were used for experimentation at 13-24 days of age.

Copyright

© 2021, Karagiannis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,414
    views
  • 580
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anastassios Karagiannis
  2. Thierry Gallopin
  3. Alexandre Lacroix
  4. Fabrice Plaisier
  5. Juliette Piquet
  6. Hélène Geoffroy
  7. Régine Hepp
  8. Jérémie Naudé
  9. Benjamin Le Gac
  10. Richard Egger
  11. Bertrand Lambolez
  12. Dongdong Li
  13. Jean Rossier
  14. Jochen F Staiger
  15. Hiromi Imamura
  16. Susumu Seino
  17. Jochen Roeper
  18. Bruno Cauli
(2021)
Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity
eLife 10:e71424.
https://doi.org/10.7554/eLife.71424

Share this article

https://doi.org/10.7554/eLife.71424

Further reading

    1. Neuroscience
    Alexa Tompary, Lila Davachi
    Research Article

    Systems consolidation theories propose two mechanisms that enable the behavioral integration of related memories: coordinated reactivation between hippocampus and cortex, and the emergence of cortical traces that reflect overlap across memories. However, there is limited empirical evidence that links these mechanisms to the emergence of behavioral integration over time. In two experiments, participants implicitly encoded sequences of objects with overlapping structure. Assessment of behavioral integration showed that response times during a recognition task reflected behavioral priming between objects that never occurred together in time but belonged to overlapping sequences. This priming was consolidation-dependent and only emerged for sequences learned 24 hr prior to the test. Critically, behavioral integration was related to changes in neural pattern similarity in the medial prefrontal cortex and increases in post-learning rest connectivity between the posterior hippocampus and lateral occipital cortex. These findings suggest that memories with a shared predictive structure become behaviorally integrated through a consolidation-related restructuring of the learned sequences, providing insight into the relationship between different consolidation mechanisms that support behavioral integration.

    1. Neuroscience
    Irene Martínez-Gallego, Heriberto Coatl-Cuaya, Antonio Rodriguez-Moreno
    Research Article

    The entorhinal cortex (EC) connects to the hippocampus sending different information from cortical areas that is first processed at the dentate gyrus (DG) including spatial, limbic and sensory information. Excitatory afferents from lateral (LPP) and medial (MPP) perforant pathways of the EC connecting to granule cells of the DG play a role in memory encoding and information processing and are deeply affected in humans suffering Alzheimer’s disease and temporal lobe epilepsy, contributing to the dysfunctions found in these pathologies. The plasticity of these synapses is not well known yet, as are not known the forms of long-term depression (LTD) existing at those connections. We investigated whether spike timing-dependent long-term depression (t-LTD) exists at these two different EC-DG synaptic connections in mice, and whether they have different action mechanisms. We have found two different forms of t-LTD, at LPP- and MPP-GC synapses and characterised their cellular and intracellular mechanistic requirements. We found that both forms of t-LTD are expressed presynaptically and that whereas t-LTD at LPP-GC synapses does not require NMDAR, t-LTD at MPP-GC synapses requires ionotropic NMDAR containing GluN2A subunits. The two forms of t-LTD require different group I mGluR, mGluR5 LPP-GC synapses and mGluR1 MPP-GC synapses. In addition, both forms of t-LTD require postsynaptic calcium, eCB synthesis, CB1R, astrocyte activity, and glutamate released by astrocytes. Thus, we discovered two novel forms of t-LTD that require astrocytes at EC-GC synapses.