Loss of Elp1 disrupts trigeminal ganglion neurodevelopment in a model of Familial Dysautonomia

  1. Carrie E Leonard
  2. Jolie Quiros
  3. Frances Lefcort
  4. Lisa A Taneyhill  Is a corresponding author
  1. University of Maryland, College Park, United States
  2. Montana State University, United States

Abstract

Familial Dysautonomia (FD) is a sensory and autonomic neuropathy caused by mutations in Elongator complex protein 1 (ELP1). FD patients have small trigeminal nerves and impaired facial pain and temperature perception. These signals are relayed by nociceptive neurons in the trigeminal ganglion, a structure comprised of both neural crest- and placode-derived cells. Mice lacking Elp1 in neural crest derivatives ('Elp1 CKO') are born with small trigeminal ganglia, suggesting Elp1 is important for trigeminal ganglion development, yet the function of Elp1 in this context is unknown. We demonstrate that Elp1, expressed in both neural crest- and placode-derived neurons, is not required for initial trigeminal ganglion formation. However, Elp1 CKO trigeminal neurons exhibit abnormal axon outgrowth and deficient target innervation. Developing nociceptors expressing the receptor TrkA undergo early apoptosis in Elp1 CKO, while TrkB- and TrkC-expressing neurons are spared, indicating Elp1 supports the target innervation and survival of trigeminal nociceptors. Further, we demonstrate that specific TrkA deficits in the Elp1 CKO trigeminal ganglion reflect the neural crest lineage of most TrkA neurons, versus the placodal lineage of most TrkB and TrkC neurons. Altogether, these findings explain defects in cranial gangliogenesis that may lead to loss of facial pain and temperature sensation in FD.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source Data files have been provided for Figures 2-9.

Article and author information

Author details

  1. Carrie E Leonard

    Department of Avian and Animal Sciences, University of Maryland, College Park, College Park, United States
    Competing interests
    No competing interests declared.
  2. Jolie Quiros

    Department of Avian and Animal Sciences, University of Maryland, College Park, College Park, United States
    Competing interests
    No competing interests declared.
  3. Frances Lefcort

    Department of Cell Biology and Neuroscience, Montana State University, Bozeman, United States
    Competing interests
    Frances Lefcort, is the Co-Chair of the Scientific Advisory Board of the Familial Dysautonomia Foundation, Inc..
  4. Lisa A Taneyhill

    Department of Avian and Animal Sciences, University of Maryland, College Park, College Park, United States
    For correspondence
    ltaney@umd.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8630-2514

Funding

National Institutes of Health

  • Lisa A Taneyhill

National Institutes of Health

  • Frances Lefcort

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Ethics

Animal experimentation: All animal care and use described herein was in accordance with federal and institutional guidelines and approved by Montana State University's and University of Maryland's IACUC, under protocols #2018-81 (MSU) and #R-MAR-20-15 (UMD).

Version history

  1. Preprint posted: June 10, 2021 (view preprint)
  2. Received: June 19, 2021
  3. Accepted: June 17, 2022
  4. Accepted Manuscript published: June 17, 2022 (version 1)
  5. Accepted Manuscript updated: June 22, 2022 (version 2)
  6. Version of Record published: July 11, 2022 (version 3)

Copyright

© 2022, Leonard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 889
    views
  • 182
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carrie E Leonard
  2. Jolie Quiros
  3. Frances Lefcort
  4. Lisa A Taneyhill
(2022)
Loss of Elp1 disrupts trigeminal ganglion neurodevelopment in a model of Familial Dysautonomia
eLife 11:e71455.
https://doi.org/10.7554/eLife.71455

Share this article

https://doi.org/10.7554/eLife.71455

Further reading

    1. Developmental Biology
    Zhimin Xu, Zhao Wang ... Yingchuan B Qi
    Research Article

    Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.