Control of protein synthesis and memory by GluN3A-NMDA receptors through inhibition of GIT1/mTORC1 assembly

  1. María J Conde-Dusman
  2. Partha N Dey
  3. Óscar Elía-Zudaire
  4. Luis G Rabaneda
  5. Carmen García-Lira
  6. Teddy Grand
  7. Victor Briz
  8. Eric R Velasco
  9. Raül Andero
  10. Sergio Niñerola
  11. Angel Barco
  12. Pierre Paoletti
  13. John F Wesseling
  14. Fabrizio Gardoni
  15. Steven J Tavalin
  16. Isabel Perez-Otaño  Is a corresponding author
  1. lnstituto de Neurociencias (UMH-CSIC), Spain
  2. Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Spain
  3. Centre for Developmental Neurobiology, Institute of Psychiatry, King’s College London, United Kingdom
  4. National Eye Institute, National Institutes of Health, United States
  5. Institute of Science and Technology Austria, Austria
  6. Institut de Biologie de l’Ecole Normale Supérieure/CNRS/INSERM, France
  7. Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Spain
  8. Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
  9. Institut de Neurociències, Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Spain
  10. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
  11. ICREA, Spain
  12. Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
  13. Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, United States
8 figures, 1 table and 1 additional file

Figures

Figure 1 with 2 supplements
GluN3A inhibits the activity-dependent induction of a subset of immediate-early genes (IEGs).

(A) Timeline of endogenous GluN3A expression and downregulation and of lentiviral infections. Rat cortical neurons in primary culture were infected on days in vitro (DIV) 9 with lentiviruses where …

Figure 1—source data 1

Western blots for immediate-early gene (IEG) induction in GFP and GFP-GluN3A-infected neurons after bicuculline treatment.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig1-data1-v2.zip
Figure 1—source data 2

Western blots for bicuculline induction of immediate-early genes (IEGs) in GFP and GFP-GluN3A-infected neurons in the presence of MG132.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig1-data2-v2.zip
Figure 1—figure supplement 1
Selective versus global effects of GluN3A expression and general NMDAR blockade on activity-dependent signaling.

(A) Immunoblot (IB) analysis of the time-course of expression of NMDAR subunits and a repertoire of synaptic proteins in cultured cortical neurons. (B) Immunoblot analysis of extracellular …

Figure 1—figure supplement 1—source data 1

Annotated western blots and original scans.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig1-figsupp1-data1-v2.zip
Figure 1—figure supplement 1—source data 2

Annotated western blots and original scans.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig1-figsupp1-data2-v2.zip
Figure 1—figure supplement 1—source data 3

Annotated western blots and original scans.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig1-figsupp1-data3-v2.zip
Figure 1—figure supplement 1—source data 4

Annotated western blots and original scans.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig1-figsupp1-data4-v2.zip
Figure 1—figure supplement 2
RNAseq analysis of activity-dependent gene expression.

(A) Principal component analysis plot representing all RNAseq samples. (B) Volcano plot from RNAseq analysisof gene expression in untreated days in vitro (DIV) 14 neurons infected with GFP or …

Figure 2 with 1 supplement
GluN3A inhibits the activation of mTORC1 signaling by synaptic stimuli.

(A) Schematic of the mTORC1 signaling pathway. (B) Left, representative western blots of primary rat cortical neurons infected with GFP and GFP-GluN3A (days in vitro [DIV] 9) and treated with …

Figure 2—source data 1

Western blots for mTOR and downstream effector phosphorylation in GFP and GFP-GluN3A-infected cortical neurons after bicuculline treatment.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig2-data1-v2.zip
Figure 2—source data 2

Western blots for rapamycin dependence of immediate-early gene (IEG) induction in DIV14 cortical neurons by bicuculline treatment.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig2-data2-v2.zip
Figure 2—source data 3

Western blots for S6 phosphorylation and Arc induction by bicuculline in GFP and GFP-GluN3A-infected cortical neurons in the presence of caRheb.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig2-data3-v2.zip
Figure 2—figure supplement 1
General inhibition of the activity induction of immediate-early genes (IEGs) by anisomycin.

(A) Immunoblot analysis of the phosphorylation status of the mTOR downstream effector S6 in lysates from days in vitro (DIV) 14 cortical neurons stimulated with bicuculline in the absence (Ctrl) or …

Figure 2—figure supplement 1—source data 1

Annotated western blots and original scans.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig2-figsupp1-data1-v2.zip
Figure 2—figure supplement 1—source data 2

Annotated western blots and original scan.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig2-figsupp1-data2-v2.zip
GluN3A deletion potentiates synaptic mTORC1 signaling.

(A) Primary rat cortical neurons were infected on days in vitro (DIV) 3 with lentiviruses expressing GFP alone or along with a small hairpin RNA (shRNA) against GluN3A (GFP-sh3A) and collected at …

Figure 3—source data 1

Western blots for S6 kinase (S6K) and S6 phosphorylation in control and sh3A-infected days in vitro (DIV) 7 cortical neurons.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig3-data1-v2.zip
Figure 3—source data 2

Western blots for Arc and Fos induction by bicuculline and BDNF in control and sh3A-infected days in vitro (DIV) 7 cortical neurons.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig3-data2-v2.zip
Figure 3—source data 3

Western blots for S6 kinase (S6K) and S6 phosphorylation in lysates from P8 and P16 wild-type and Grin3a−/− hippocampi.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig3-data3-v2.zip
Figure 4 with 1 supplement
mTORC1 inhibition is mediated by GluN3A C-terminal domain interactions.

(A) Cortical neurons from Grin3a−/− mice were infected on days in vitro (DIV) 6 with lentiviruses expressing GFP, GFP-GluN3A, or GFP-GluN3A1082∆, and stimulated with bicuculline or BDNF at DIV12. (B,…

Figure 4—source data 1

Western blots for mechanistic target of rapamycin (mTOR) effector phosphorylation and Arc and Fos induction in GFP, GFP-GluN3A, and GFP-GluN3A1082Δ-infected cortical neurons after bicuculline treatment.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig4-data1-v2.zip
Figure 4—source data 2

Western blots for mechanistic target of rapamycin (mTOR) effector phosphorylation and Arc and Fos induction in GFP, GFP-GluN3A, and GFP-GluN3A1082Δ-infected cortical neurons after BDNF treatment.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig4-data2-v2.zip
Figure 4—figure supplement 1
Electrophysiological properties of recombinant NMDA and excitatory glycine receptors containing full-length or truncated GluN3A.

(A) Left, representative steady-state glutamate-evoked ramp currents obtained with 2 mM (black) and 10 mM (red) extracellular Ca2+ for HEK293 cells expressing GluN1A/GluN2A alone, or with either …

GIT1/mechanistic target of rapamycin (mTOR)/Raptor complexes couple synaptic activation to mTORC1-dependent protein synthesis.

(A, B) Protein extracts from P16 mouse hippocampus were solubilized with 0.3 % CHAPS buffer, incubated with antibodies against mTOR or GIT1 (IP), and immunoprecipitated proteins analysed by …

Figure 5—source data 1

Coimmunoprecipitation assays of GIT1 with mechanistic target of rapamycin (mTOR), Raptor, and Rictor in P16 mouse hippocampus.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig5-data1-v2.zip
Figure 5—source data 2

Coimmunoprecipitation of GIT1 with phosphorylated mechanistic target of rapamycin (mTOR) in Ser2448 in P16 mouse hippocampus.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig5-data2-v2.zip
Figure 5—source data 3

Coimmunoprecipitaion of GIT1 and phosphorylated mechanistic target of rapamycin (mTOR) in days in vitro (DIV) 17 hippocampal neurons after bicuculline and BDNF treatment.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig5-data3-v2.zip
Figure 5—source data 4

Western blots of mechanistic target of rapamycin (mTOR) effectors and immediate-early gene (IEG) induction by BDNF in the presence or absence of rapamycin in days in vitro (DIV) 14 cortical neurons infected with control or shGIT1-expressing lentiviruses.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig5-data4-v2.zip
Figure 5—source data 5

Western blots of puromycin incorporation in days in vitro (DIV) 14 cortical neurons infected with control or shGIT1-expressing lentiviruses.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig5-data5-v2.zip
Figure 6 with 2 supplements
GluN3A/GIT1 interactions control the age-dependent onset of mTORC1-dependent protein synthesis.

(A) Hippocampi from P7, P10, and P16 wild-type mice were lysed, immunoprecipitated with GIT1 antibody and probed for the indicated antibodies. Input: 10 % of the lysate used for immunoprecipitation. …

Figure 6—source data 1

Coimmunoprecipitation of GIT1 and mechanistic target of rapamycin (mTOR) in lysates from P7, P10, and P16 mouse hippocampus.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig6-data1-v2.zip
Figure 6—source data 2

Coimmunoprecipitation of GIT1 with mechanistic target of rapamycin (mTOR) and Raptor in hippocampal lysates from P10 wild-type and Grin3a−/− mice.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig6-data2-v2.zip
Figure 6—source data 3

Coimmunoprecipitation of GIT1 with mechanistic target of rapamycin (mTOR) in Grin3a−/− cortical neurons infected with GFP, GFP-GluN3A, and GFP-GluN3A1082Δ lentiviruses.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig6-data3-v2.zip
Figure 6—source data 4

Western blots of puromycin incorporation in neurons infected with control or sh3A-expressing lentiviruses.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig6-data4-v2.zip
Figure 6—source data 5

Western blots of puromycin incorporation in the presence or absence of rapamycin in Grin3a−/− cortical neurons infected with GFP, GFP-GluN3A, and GFP-GluN3A1082Δ.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig6-data5-v2.zip
Figure 6—figure supplement 1
Postnatal regulation of GIT1/mTORC1 complexes in mouse somatosensory cortex.

Somatosensory cortices from P7, P10, and P16 wild-type mice were lysed, immunoprecipitated with GIT1 antibody and probed for the indicated antibodies. Input: 10 % of the lysate used for …

Figure 6—figure supplement 1—source data 1

Annotated western blots and original scans.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig6-figsupp1-data1-v2.zip
Figure 6—figure supplement 2
Age-dependent emergence of mTORC1-dependent protein synthesis in cultured rat cortical neurons.

Representative blots and quantification of puromycin incorporation in the presence or absence of 100 nM rapamycin in wild-type days in vitro (DIV) 7 and DIV14 neurons. Puromycin levels were …

Figure 6—figure supplement 2—source data 1

Annotated western blots and original scans.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig6-figsupp2-data1-v2.zip
Figure 7 with 2 supplements
GluN3A deletion facilitates spatial and associative learning.

(A) Escape latencies of male wild-type (WT) and Grin3a−/− mice on a weak version of the Morris water maze (two trials per day) during 7-day training and after platform reversal on day 8. (B) Probe …

Figure 7—figure supplement 1
Behavior of male and female Grin3a−/− mice in the Morris water maze.

(A) Escape latencies of male wild-type (WT) and Grin3a−/− mice over the time-course of training on a standard hidden platform version of the Morris water maze (7 days, four trials per day). (B) …

Figure 7—figure supplement 2
Controls for conditioned taste aversion (CTA) experiments.

(A) Double transgenic GluN3A (dtGluN3A) and wild-type (WT) mice showed similar ‘lying on belly’ latencies after a 0.15 M LiCl injection (n = 4–5 mice per group; unpaired two-tailed t-test, ***p < …

Figure 8 with 1 supplement
GluN3A deletion from excitatory neurons in adult mice is sufficient for memory enhancement.

(A) Contextual fear conditioning test. (B) Enhanced contextual fear conditioning in Grin3a−/− mice 24 hr but not 1 hr after training (n = 9–13 mice per group; left: repeated measures two-way …

Figure 8—figure supplement 1
Expression of GluN3A and other synaptic proteins in conditional Grin3a knockout mice.

(A) Top, tamoxifen (TMX) administration regime to Grin3af/f × CamK2a-CreERT2 mice. Hippocampal lysates of P90 mice were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis …

Figure 8—figure supplement 1—source data 1

Annotated western blots and original scans.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig8-figsupp1-data1-v2.zip
Figure 8—figure supplement 1—source data 2

Annotated western blots and original scans.

https://cdn.elifesciences.org/articles/71575/elife-71575-fig8-figsupp1-data2-v2.zip

Tables

Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
AntibodyGIT-1 (mouse monoclonal, clone A-1)Santa Cruz BiotechnologyCat# sc-365084; RRID: AB_10850059PLA 1:150
AntibodyArc (mouse monoclonal, clone C-7)Santa Cruz BiotechnologyCat# sc-17839; RRID: AB_626696WB 1:100
Antibodybeta-Tubulin III (mouse monoclonal)Sigma-AldrichCat# T8660; RRID: AB_477590WB 1:20,000
AntibodyNMDAR1, all splice variants (mouse monoclonal, clone R1JHL)MilliporeCat# MAB1586; RRID: AB_11213180WB 1:1000
AntibodyNR2B (mouse monoclonal, clone BWJHL)MilliporeCat# 05–920; RRID: AB_417391WB 1:1000
AntibodyNR3A (mouse monoclonal)Kindly provided by Jim TrimmerN/AWB 1:100
AntibodyPSD-95 (mouse monoclonal, clone K28/43)Antibodies IncorporatedCat# 75–028RRID: AB_10698024WB 1:1000
AntibodyPuromycin (mouse monoclonal, clone 12D10)MilliporeCat# MABE343; RRID: AB_2566826WB 1:2000
AntibodySynapsin I (mouse monoclonal, clone 46.1)Synaptic SystemsCat# 106 011RRID: AB_2619772WB 1:5000
AntibodySynaptophysin (mouse monoclonal, clone SY38)MilliporeCat# MAB5258-20UG; RRID: AB_11214133WB 1:2000
AntibodyCREB (rabbit monoclonal, clone 48H2)Cell Signaling TechnologyCat# 9197; RRID: AB_331277WB 1:1000
AntibodyNR2A (rabbit monoclonal, clone A12W)MilliporeCat# 05–901 R; RRID: AB_10805961WB 1:1000
AntibodyPhospho-CamKinase II alpha (CaMKIIα) Thr286 (rabbit monoclonal, clone D21E4)Cell Signaling TechnologyCat# 12716; RRID: AB_2713889WB 1:1000
AntibodyPhospho-p70 S6 kinase Thr389 (rabbit monoclonal, clone 108D2)Cell Signaling TechnologyCat# 9234; RRID: AB_2269803WB 1:1000
AntibodyRaptor (rabbit monoclonal, clone 24C12)Cell Signaling TechnologyCat# 2280; RRID: AB_561245WB 1:1000
AntibodyRheb (rabbit monoclonal, clone E1G1R)Cell Signaling TechnologyCat# 13879; RRID: AB_2721022WB 1:1000
AntibodyRictor (rabbit monoclonal, clone 53A2)Cell Signaling TechnologyCat# 2114; RRID: AB_2179963WB 1:500
AntibodyS6 ribosomal protein (rabbit monoclonal, clone 5G10)Cell Signaling TechnologyCat# 2217; RRID: AB_331355WB 1:1000
AntibodyGIT1 (rabbit polyclonal)Cell Signaling TechnologyCat# 2919; RRID: AB_2109982IP 1:200, WB 1:1000
AntibodyEgr-1/Zif268 (rabbit polyclonal)Santa Cruz BiotechnologyCat# sc-110; RRID: AB_2097174WB 1:500
Antibodybeta-Pix, SH3 domain (rabbit polyclonal)MilliporeCat# 07–1450; RRID: AB_1586904WB 1:1000
Antibodyc-Fos (rabbit polyclonal)Santa Cruz BiotechnologyCat# sc-52; RRID: AB_2106783WB 1:500
AntibodyCaMKIIα (rabbit polyclonal)Sigma-AldrichCat# C6974; RRID: AB_258984WB 1:1000
AntibodymTOR (rabbit polyclonal)Cell Signaling TechnologyCat# 2972; RRID: AB_330978IP 1:100, PLA 1:150, WB 1:1000
AntibodyNMDAR2A&B, pan antibody (rabbit polyclonal)MilliporeCat# AB1548; RRID: AB_11212156WB 1:1000
AntibodyNR3A (rabbit polyclonal)MilliporeCat# 07–356; RRID: AB_2112620WB 1:1000
Antibodyp30alpha (rabbit polyclonal)Santa Cruz BiotechnologyCat# sc-535; RRID: AB_632138WB 1:1000
Antibodyp44/42 MAPK (Erk1/2) (rabbit polyclonal)Cell Signaling TechnologyCat# 9102; RRID: AB_330744WB 1:1000
Antibodyp70 S6 kinase (rabbit polyclonal)Cell Signaling TechnologyCat# 9202; RRID: AB_331676WB 1:1000
AntibodyPhospho-CREB Ser133 (rabbit polyclonal)MilliporeCat# 06–519; RRID: AB_310153WB 1:1000
AntibodyPhospho-mTOR Ser2448 (rabbit polyclonal)Cell Signaling TechnologyCat# 2971; RRID: AB_330970WB 1:1000
AntibodyPhospho-p38 MAPK Thr180/Tyr182 (rabbit polyclonal)Cell Signaling TechnologyCat# 9911; RRID: AB_10695905WB 1:1000
AntibodyPhospho-p44/42 MAPK (Erk1/2) Thr202/Tyr204 (rabbit polyclonal)Cell Signaling TechnologyCat# 9101; RRID: AB_331646WB 1:1000
AntibodyPhospho-S6 ribosomal protein Ser240/244 (rabbit polyclonal)Cell Signaling TechnologyCat# 2215; RRID: AB_331682WB 1:1000
Cell line (Homo sapiens)HEK293ATCCCat# CRL-1573; RRID: CVCL_0045
Chemical compound, drug(−)-Bicuculline methiodideAbcamCat# Ab120108; CAS: 55950-07-7
Chemical compound, drug(D,L)-APV sodium saltTocrisCat# 3693; CAS: 1303993-72-7
Chemical compound, drugAnisomycinSigma-AldrichCat# A5892; CAS: 22862-76-6
Chemical compound, drugB27 supplementThermo Fisher ScientificCat# 17504044
Chemical compound, drugBDNFPeproTechCat# 450-02; AN: P23560
Chemical compound, drugCGP-78608TocrisCat# 1493; CAS: 1135278-54-4
Chemical compound, drugcOmplete Protease Inhibitor CocktailSigma-AldrichCat# 04693116001
Chemical compound, drugCycloheximideSigma-AldrichCat# C7698; CAS: 66-81-9
Chemical compound, drugMK-801TocrisCat# 0924; CAS: 77086-22-7
Chemical compound, drugPuromycin dihydrochlorideSigma-AldrichCat# P8833; CAS: 58-58-2
Chemical compound, drugRapamycinAlfa AesarCat# J62473; CAS: 53123-88-9
Chemical compound, drugTamoxifenSigma-AldrichCat# T5648
Chemical compound, drugTetrodotoxin citrateAlomone LabsCat# T-550; CAS: 18660-81-6
Commercial assay, kitDuolink In Situ Red Starter Kit Mouse/RabbitSigma-AldrichCat# DUO92101
Commercial assay, kitMasterMix qPCR ROx PyroTaq EvaGreencmbCat# 87H24
Commercial assay, kitNucleospin RNAMacherey-NagelCat# 740955.50
Commercial assay, kitPierce BCA Protein Assay kitThermo Fisher ScientificCat# 23,227
Commercial assay, kitSuperScript IV First-Strand cDNA Synthesis SystemInvitrogenCat# 18-091-050
Genetic reagent (Mus musculus)Mouse: B6;129 × 1-Grin3atm1Nnk/JThe Jackson LaboratoryCat# JAX:029974; RRID: IMSR_JAX:029974
Genetic reagent (Mus musculus)Mouse: CaMKIIα-CreERT2+/-Erdmann et al., 2007
Genetic reagent (Mus musculus)Mouse: Grin3atm1a(EUCOMM)Hmgu/HEUCOMM
Genetic reagent (Mus musculus)Mouse: Sst-IRES-CreThe Jackson LaboratoryStock: 018973
Genetic reagent (virus)LV-hSYN-WPRE-hSYN-GFP-WPREGascón et al., 2008
Genetic reagent (virus)LV-hSYN-GluN3A-WPRE-hSYN-GFP-WPREThis paperSee Materials and methods; generated/stored in Perez-Otano’s lab.
Genetic reagent (virus)LV-hSYN-GluN3A1082Δ-WPRE-hSYN-GFP-WPREThis paperSee Materials and methods; generated/stored in Perez-Otano’s lab.
Genetic reagent (virus)pLentiLox3.7-GFP (pLL3.7-GFP)Kindly provided by Dr. Michael EhlersAddgene plasmid #11795; RRID: Addgene_11795
Genetic reagent (virus)pLL3.7-shGluN3A1185-GFP (Target sequence: CTACAGCTGAGTTTAGAAA)Yuan et al., 2013
Genetic reagent (virus)pLL3.7-shGIT1-GFP (Target sequence: TGATCACAAGAATGGGCATTA)This paperSee Materials and methods; generated/stored in Perez-Otano’s lab.
Recombinant DNA reagent (plasmid)pcDNA1-Amp-GluN1-1APerez-Otano et al., 2001
Recombinant DNA reagent (plasmid)pcDNA1-Amp-GluN2APerez-Otano et al., 2001
Recombinant DNA reagent (plasmid)pCIneo-GFPGluN3APerez-Otano et al., 2001
Recombinant DNA reagent (plasmid)pCIneo-GFPGluN3A1082ΔThis paperSee Materials and methods; generated/stored in Perez-Otano’s lab.
Recombinant DNA reagent (plasmid)pRK5-GFPKindly provided by Dr. Michael Ehlers
Sequence-based reagent (oligonucleotide)Arc_fwd (mouse)This paperGAGCCTACAGAGCCAGGAGA
Sequence-based reagent (oligonucleotide)Arc_rv (mouse)This paperTGCCTTGAAAGTGTCTTGGA
Sequence-based reagent (oligonucleotide)c-Fos_fwd (mouse/rat)Chen et al., 2020CTGCTCTACTTTGCCCCTTCT
Sequence-based reagent (oligonucleotide)c-Fos_rv (mouse/rat)Chen et al., 2020;TTTATCCCCACGGTGACAGC
Sequence-based reagent (oligonucleotide)GAPDH_fwd (mouse/rat)This paperCATGGCCTTCCGTGTTCCT
Sequence-based reagent (oligonucleotide)GAPDH_rv (mouse/ rat)This paperTGATGTCATCATACTTGGCAGGTT
Software, algorithmImageJSchneider, Rasband and Eliceiri, 2012https://imagej.nih.gov/ij/
Software, algorithmImageQuant software version 5.2GE Healthcare
Software, algorithmPrism software version 7.00Graphpad
Software, algorithmQuantStudio 3 Design and Analysis software v1.5.1Thermo Fisher Scientific
Software, algorithmSMART software for video-trackingPanLab S.L.

Additional files

Download links