Distributed coding of duration in rodent prefrontal cortex during time reproduction

Abstract

As we interact with the external world, we judge magnitudes from sensory information. The estimation of magnitudes has been characterized in primates, yet it is largely unexplored in non-primate species. Here we use time interval reproduction to study rodent behavior and its neural correlates in the context of magnitude estimation. We show that gerbils display primate-like magnitude estimation characteristics in time reproduction. Most prominently their behavioral responses show a systematic overestimation of small stimuli and an underestimation of large stimuli, often referred to as regression effect. We investigated the underlying neural mechanisms by recording from medial prefrontal cortex and show that the majority of neurons respond either during the measurement or the reproduction of a time interval. Cells that are active during both phases display distinct response patterns. We categorize the neural responses into multiple types and demonstrate that only populations with mixed responses can encode the bias of the regression effect. These results help unveil the organizing neural principles of time reproduction and perhaps magnitude estimation in general.

Data availability

Raw data for this study are available at https://doi.org/10.12751/g-node.tarvrs (Henke et al., 2021).In addition, source data are given when mentioned in the respective figures.

The following data sets were generated

Article and author information

Author details

  1. Josephine Henke

    Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. David Bunk

    Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Dina von Werder

    Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4193-5203
  4. Stefan Häusler

    Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Virginia L Flanagin

    German Center for Vertigo and Balance Disorders,, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Kay Thurley

    Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
    For correspondence
    thurley@bio.lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4857-1083

Funding

Bundesministerium für Bildung, Wissenschaft und Forschung (01GQ1004A)

  • Josephine Henke
  • Kay Thurley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved according to national and European guidelines on animal welfare (Reg. von Oberbayern, District Government of Upper Bavaria; reference numbers: AZ 55.2-1-54-2532-10-11 and AZ 55.2-1-54-2532-70-2016).

Reviewing Editor

  1. Hugo Merchant, National Autonomous University of Mexico, Mexico

Version history

  1. Received: June 24, 2021
  2. Accepted: December 14, 2021
  3. Accepted Manuscript published: December 23, 2021 (version 1)
  4. Version of Record published: January 24, 2022 (version 2)

Copyright

© 2021, Henke et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,228
    Page views
  • 225
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Josephine Henke
  2. David Bunk
  3. Dina von Werder
  4. Stefan Häusler
  5. Virginia L Flanagin
  6. Kay Thurley
(2021)
Distributed coding of duration in rodent prefrontal cortex during time reproduction
eLife 10:e71612.
https://doi.org/10.7554/eLife.71612

Further reading

    1. Neuroscience
    Connon I Thomas, Melissa A Ryan ... Benjamin Scholl
    Research Article

    Postsynaptic mitochondria are critical for the development, plasticity, and maintenance of synaptic inputs. However, their relationship to synaptic structure and functional activity is unknown. We examined a correlative dataset from ferret visual cortex with in vivo two-photon calcium imaging of dendritic spines during visual stimulation and electron microscopy reconstructions of spine ultrastructure, investigating mitochondrial abundance near functionally and structurally characterized spines. Surprisingly, we found no correlation to structural measures of synaptic strength. Instead, we found that mitochondria are positioned near spines with orientation preferences that are dissimilar to the somatic preference. Additionally, we found that mitochondria are positioned near groups of spines with heterogeneous orientation preferences. For a subset of spines with a mitochondrion in the head or neck, synapses were larger and exhibited greater selectivity to visual stimuli than those without a mitochondrion. Our data suggest mitochondria are not necessarily positioned to support the energy needs of strong spines, but rather support the structurally and functionally diverse inputs innervating the basal dendrites of cortical neurons.

    1. Neuroscience
    Weiwei Qui, Chelsea R Hutch ... Darleen Sandoval
    Research Article

    Several discrete groups of feeding-regulated neurons in the nucleus of the solitary tract (nucleus tractus solitarius; NTS) suppress food intake, including avoidance-promoting neurons that express Cck (NTSCck cells) and distinct Lepr- and Calcr-expressing neurons (NTSLepr and NTSCalcr cells, respectively) that suppress food intake without promoting avoidance. To test potential synergies among these cell groups we manipulated multiple NTS cell populations simultaneously. We found that activating multiple sets of NTS neurons (e.g., NTSLepr plus NTSCalcr (NTSLC), or NTSLC plus NTSCck (NTSLCK)) suppressed feeding more robustly than activating single populations. While activating groups of cells that include NTSCck neurons promoted conditioned taste avoidance (CTA), NTSLC activation produced no CTA despite abrogating feeding. Thus, the ability to promote CTA formation represents a dominant effect but activating multiple non-aversive populations augments the suppression of food intake without provoking avoidance. Furthermore, silencing multiple NTS neuron groups augmented food intake and body weight to a greater extent than silencing single populations, consistent with the notion that each of these NTS neuron populations plays crucial and cumulative roles in the control of energy balance. We found that silencing NTSLCK neurons failed to blunt the weight-loss response to vertical sleeve gastrectomy (VSG) and that feeding activated many non-NTSLCK neurons, however, suggesting that as-yet undefined NTS cell types must make additional contributions to the restraint of feeding.