Distributed coding of duration in rodent prefrontal cortex during time reproduction

  1. Josephine Henke
  2. David Bunk
  3. Dina von Werder
  4. Stefan Häusler
  5. Virginia L Flanagin
  6. Kay Thurley  Is a corresponding author
  1. Ludwig-Maximilians-Universitaet Muenchen, Germany

Abstract

As we interact with the external world, we judge magnitudes from sensory information. The estimation of magnitudes has been characterized in primates, yet it is largely unexplored in non-primate species. Here we use time interval reproduction to study rodent behavior and its neural correlates in the context of magnitude estimation. We show that gerbils display primate-like magnitude estimation characteristics in time reproduction. Most prominently their behavioral responses show a systematic overestimation of small stimuli and an underestimation of large stimuli, often referred to as regression effect. We investigated the underlying neural mechanisms by recording from medial prefrontal cortex and show that the majority of neurons respond either during the measurement or the reproduction of a time interval. Cells that are active during both phases display distinct response patterns. We categorize the neural responses into multiple types and demonstrate that only populations with mixed responses can encode the bias of the regression effect. These results help unveil the organizing neural principles of time reproduction and perhaps magnitude estimation in general.

Data availability

Raw data for this study are available at https://doi.org/10.12751/g-node.tarvrs (Henke et al., 2021).In addition, source data are given when mentioned in the respective figures.

The following data sets were generated

Article and author information

Author details

  1. Josephine Henke

    Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. David Bunk

    Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Dina von Werder

    Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4193-5203
  4. Stefan Häusler

    Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Virginia L Flanagin

    German Center for Vertigo and Balance Disorders,, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Kay Thurley

    Faculty of Biology, Ludwig-Maximilians-Universitaet Muenchen, Planegg-Martinsried, Germany
    For correspondence
    thurley@bio.lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4857-1083

Funding

Bundesministerium für Bildung, Wissenschaft und Forschung (01GQ1004A)

  • Josephine Henke
  • Kay Thurley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved according to national and European guidelines on animal welfare (Reg. von Oberbayern, District Government of Upper Bavaria; reference numbers: AZ 55.2-1-54-2532-10-11 and AZ 55.2-1-54-2532-70-2016).

Reviewing Editor

  1. Hugo Merchant, National Autonomous University of Mexico, Mexico

Publication history

  1. Received: June 24, 2021
  2. Accepted: December 14, 2021
  3. Accepted Manuscript published: December 23, 2021 (version 1)
  4. Version of Record published: January 24, 2022 (version 2)

Copyright

© 2021, Henke et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,133
    Page views
  • 214
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Josephine Henke
  2. David Bunk
  3. Dina von Werder
  4. Stefan Häusler
  5. Virginia L Flanagin
  6. Kay Thurley
(2021)
Distributed coding of duration in rodent prefrontal cortex during time reproduction
eLife 10:e71612.
https://doi.org/10.7554/eLife.71612

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Carolyn Elya, Danylo Lavrentovich ... Benjamin de Bivort
    Research Article Updated

    For at least two centuries, scientists have been enthralled by the “zombie” behaviors induced by mind-controlling parasites. Despite this interest, the mechanistic bases of these uncanny processes have remained mostly a mystery. Here, we leverage the Entomophthora muscae-Drosophila melanogaster “zombie fly” system to reveal the mechanistic underpinnings of summit disease, a manipulated behavior evoked by many fungal parasites. Using a high-throughput approach to measure summiting, we discovered that summiting behavior is characterized by a burst of locomotion and requires the host circadian and neurosecretory systems, specifically DN1p circadian neurons, pars intercerebralis to corpora allata projecting (PI-CA) neurons and corpora allata (CA), the latter being solely responsible for juvenile hormone (JH) synthesis and release. Using a machine learning classifier to identify summiting animals in real time, we observed that PI-CA neurons and CA appeared intact in summiting animals, despite invasion of adjacent regions of the “zombie fly” brain by E. muscae cells and extensive host tissue damage in the body cavity. The blood-brain barrier of flies late in their infection was significantly permeabilized, suggesting that factors in the hemolymph may have greater access to the central nervous system during summiting. Metabolomic analysis of hemolymph from summiting flies revealed differential abundance of several compounds compared to non-summiting flies. Transfusing the hemolymph of summiting flies into non-summiting recipients induced a burst of locomotion, demonstrating that factor(s) in the hemolymph likely cause summiting behavior. Altogether, our work reveals a neuro-mechanistic model for summiting wherein fungal cells perturb the fly’s hemolymph, activating a neurohormonal pathway linking clock neurons to juvenile hormone production in the CA, ultimately inducing locomotor activity in their host.

    1. Neuroscience
    Flavia Venetucci Gouveia, Jurgen Germann ... Clement Hamani
    Research Article Updated

    Deep brain stimulation targeting the posterior hypothalamus (pHyp-DBS) is being investigated as a treatment for refractory aggressive behavior, but its mechanisms of action remain elusive. We conducted an integrated imaging analysis of a large multi-centre dataset, incorporating volume of activated tissue modeling, probabilistic mapping, normative connectomics, and atlas-derived transcriptomics. Ninety-one percent of the patients responded positively to treatment, with a more striking improvement recorded in the pediatric population. Probabilistic mapping revealed an optimized surgical target within the posterior-inferior-lateral region of the posterior hypothalamic area. Normative connectomic analyses identified fiber tracts and functionally connected with brain areas associated with sensorimotor function, emotional regulation, and monoamine production. Functional connectivity between the target, periaqueductal gray and key limbic areas – together with patient age – were highly predictive of treatment outcome. Transcriptomic analysis showed that genes involved in mechanisms of aggressive behavior, neuronal communication, plasticity and neuroinflammation might underlie this functional network.