An open-source tool for automated analysis of breathing behaviors in common marmosets and rodents

  1. Mitchell Bishop
  2. Maximilian Weinhold
  3. Ariana Z Turk
  4. Afuh Adeck
  5. Shahriar SheikhBahaei  Is a corresponding author
  1. National Institute of Neurological Disorders and Stroke, United States

Abstract

The respiratory system maintains homeostatic levels of oxygen (O2) and carbon dioxide (CO2) in the body through rapid and efficient regulation of breathing frequency and depth (tidal volume). The commonly used methods of analysing breathing data in behaving experimental animals are usually subjective, laborious, and time-consuming. To overcome these hurdles, we optimized an analysis toolkit for the unsupervised study of respiratory activities in animal subjects. Using this tool, we analyzed breathing behaviors of the common marmoset (Callithrix jacchus), a New World non-human primate model. Using Whole-body Plethysmography in room air as well as acute hypoxic (10% O2) and hypercapnic (6% CO2) conditions, we describe breathing behaviors in awake, freely behaving marmosets. Our data indicate that marmosets' exposure to acute hypoxia decreased metabolic rate and increased sigh rate. However, the hypoxic condition did not augment ventilation. Hypercapnia, on the other hand, increased both the frequency and depth (i.e., tidal volume) of breathing.

Data availability

All the code is available on the NGSC GitHub (https://github.com/NGSC-NINDS/Marm_Breathing_Bishop_et_al_2021). The data generated in Figures 3 - 6 are provided in the source files.

Article and author information

Author details

  1. Mitchell Bishop

    Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Maximilian Weinhold

    Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ariana Z Turk

    Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Afuh Adeck

    Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shahriar SheikhBahaei

    Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    For correspondence
    SheikhbahaeiS@ninds.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4119-9979

Funding

Intramural Research Program of the National Institutes of Health, NINDS and NIMH

  • Shahriar SheikhBahaei

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the Animal Care and Use Committee of the Intramural Research Program of the National Institute of Mental Health and the Intramural Research Program of the National Institute of Neurological Disorders and Stroke.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,941
    views
  • 213
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mitchell Bishop
  2. Maximilian Weinhold
  3. Ariana Z Turk
  4. Afuh Adeck
  5. Shahriar SheikhBahaei
(2022)
An open-source tool for automated analysis of breathing behaviors in common marmosets and rodents
eLife 11:e71647.
https://doi.org/10.7554/eLife.71647

Share this article

https://doi.org/10.7554/eLife.71647

Further reading

    1. Neuroscience
    Sara A Nolin, Mary E Faulkner ... Kristina Visscher
    Research Article

    The brain is organized into systems and networks of interacting components. The functional connections among these components give insight into the brain's organization and may underlie some cognitive effects of aging. Examining the relationship between individual differences in brain organization and cognitive function in older adults who have reached oldest old ages with healthy cognition can help us understand how these networks support healthy cognitive aging. We investigated functional network segregation in 146 cognitively healthy participants aged 85+ in the McKnight Brain Aging Registry. We found that the segregation of the association system and the individual networks within the association system [the fronto-parietal network (FPN), cingulo-opercular network (CON) and default mode network (DMN)], has strong associations with overall cognition and processing speed. We also provide a healthy oldest-old (85+) cortical parcellation that can be used in future work in this age group. This study shows that network segregation of the oldest-old brain is closely linked to cognitive performance. This work adds to the growing body of knowledge about differentiation in the aged brain by demonstrating that cognitive ability is associated with differentiated functional networks in very old individuals representing successful cognitive aging.

    1. Neuroscience
    Olga Kepinska, Josue Dalboni da Rocha ... Narly Golestani
    Research Article

    This study examines whether auditory cortex anatomy reflects multilingual experience, specifically individuals’ phonological repertoire. Using data from over 200 participants exposed to 1–7 languages across 36 languages, we analyzed the role of language experience and typological distances between languages they spoke in shaping neural signatures of multilingualism. Our findings reveal a negative relationship between the thickness of the left and right second transverse temporal gyrus (TTG) and participants’ degree of multilingualism. Models incorporating phoneme-level information in the language experience index explained the most variance in TTG thickness, suggesting that a more extensive and more phonologically diverse language experience is associated with thinner cortices in the second TTG. This pattern, consistent across two datasets, supports the idea of experience-driven pruning and neural efficiency. Our findings indicate that experience with typologically distant languages appear to impact the brain differently than those with similar languages. Moreover, they suggest that early auditory regions seem to represent phoneme-level cross-linguistic information, contrary to the most established models of language processing in the brain, which suggest that phonological processing happens in more lateral posterior superior temporal gyrus (STG) and superior temporal sulcus (STS).