Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain

  1. Gabriella R Sterne  Is a corresponding author
  2. Hideo Otsuna
  3. Barry J Dickson
  4. Kristin Scott  Is a corresponding author
  1. University of California Berkeley, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. University of California, Berkeley, United States

Abstract

Neural circuits carry out complex computations that allow animals to evaluate food, select mates, move toward attractive stimuli, and move away from threats. In insects, the subesophageal zone (SEZ) is a brain region that receives gustatory, pheromonal, and mechanosensory inputs and contributes to the control of diverse behaviors, including feeding, grooming, and locomotion. Despite its importance in sensorimotor transformations, the study of SEZ circuits has been hindered by limited knowledge of the underlying diversity of SEZ neurons. Here, we generate a collection of split-GAL4 lines that provides precise genetic targeting of 138 different SEZ cell types in adult D. melanogaster, comprising approximately one third of all SEZ neurons. We characterize the single cell anatomy of these neurons and find that they cluster by morphology into six supergroups that organize the SEZ into discrete anatomical domains. We find that the majority of local SEZ interneurons are not classically polarized, suggesting rich local processing, whereas SEZ projection neurons tend to be classically polarized, conveying information to a limited number of higher brain regions. This study provides insight into the anatomical organization of the SEZ and generates resources that will facilitate further study of SEZ neurons and their contributions to sensory processing and behavior.

Data availability

Detailed information about the split-GAL4s and available imagery is included in a supplemental database (attached as a supporting file). Image data are publicly available and all lines may be ordered at http://splitgal4.janelia.org.

The following previously published data sets were used

Article and author information

Author details

  1. Gabriella R Sterne

    Molecular & Cell Biology, University of California Berkeley, Berkeley, United States
    For correspondence
    sternegr@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7221-648X
  2. Hideo Otsuna

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Barry J Dickson

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0715-892X
  4. Kristin Scott

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    kscott@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3150-7210

Funding

Howard Hughes Medical Institute

  • Gabriella R Sterne
  • Hideo Otsuna
  • Barry J Dickson

National Institute of Diabetes and Digestive and Kidney Diseases (F32DK117671)

  • Gabriella R Sterne

National Institute of General Medical Sciences (R01NS110060)

  • Gabriella R Sterne
  • Kristin Scott

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Sterne et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,283
    views
  • 720
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gabriella R Sterne
  2. Hideo Otsuna
  3. Barry J Dickson
  4. Kristin Scott
(2021)
Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain
eLife 10:e71679.
https://doi.org/10.7554/eLife.71679

Share this article

https://doi.org/10.7554/eLife.71679

Further reading

    1. Neuroscience
    Mirela Zaneva, Tao Coll-Martín ... Alyssa Hillary Zisk
    Feature Article

    Since its inception, the concept of neurodiversity has been defined in a number of different ways, which can cause confusion among those hoping to educate themselves about the topic. Learning about neurodiversity can also be challenging because there is a lack of well-curated, appropriately contextualized information on the topic. To address such barriers, we present an annotated reading list that was developed collaboratively by a neurodiverse group of researchers. The nine themes covered in the reading list are: the history of neurodiversity; ways of thinking about neurodiversity; the importance of lived experience; a neurodiversity paradigm for autism science; beyond deficit views of ADHD; expanding the scope of neurodiversity; anti-ableism; the need for robust theory and methods; and integration with open and participatory work. We hope this resource can support readers in understanding some of the key ideas and topics within neurodiversity, and that it can further orient researchers towards more rigorous, destigmatizing, accessible, and inclusive scientific practices.

    1. Neuroscience
    Meera Chikermane, Liz Weerdmeester ... Wolf Julian Neumann
    Research Article

    Brain rhythms can facilitate neural communication for the maintenance of brain function. Beta rhythms (13–35 Hz) have been proposed to serve multiple domains of human ability, including motor control, cognition, memory, and emotion, but the overarching organisational principles remain unknown. To uncover the circuit architecture of beta oscillations, we leverage normative brain data, analysing over 30 hr of invasive brain signals from 1772 channels from cortical areas in epilepsy patients, to demonstrate that beta is the most distributed cortical brain rhythm. Next, we identify a shared brain network from beta-dominant areas with deeper brain structures, like the basal ganglia, by mapping parametrised oscillatory peaks to whole-brain functional and structural MRI connectomes. Finally, we show that these networks share significant overlap with dopamine uptake as indicated by positron emission tomography. Our study suggests that beta oscillations emerge in cortico-subcortical brain networks that are modulated by dopamine. It provides the foundation for a unifying circuit-based conceptualisation of the functional role of beta activity beyond the motor domain and may inspire an extended investigation of beta activity as a feedback signal for closed-loop neurotherapies for dopaminergic disorders.