Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain

  1. Gabriella R Sterne  Is a corresponding author
  2. Hideo Otsuna
  3. Barry J Dickson
  4. Kristin Scott  Is a corresponding author
  1. University of California Berkeley, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
  3. University of California, Berkeley, United States

Abstract

Neural circuits carry out complex computations that allow animals to evaluate food, select mates, move toward attractive stimuli, and move away from threats. In insects, the subesophageal zone (SEZ) is a brain region that receives gustatory, pheromonal, and mechanosensory inputs and contributes to the control of diverse behaviors, including feeding, grooming, and locomotion. Despite its importance in sensorimotor transformations, the study of SEZ circuits has been hindered by limited knowledge of the underlying diversity of SEZ neurons. Here, we generate a collection of split-GAL4 lines that provides precise genetic targeting of 138 different SEZ cell types in adult D. melanogaster, comprising approximately one third of all SEZ neurons. We characterize the single cell anatomy of these neurons and find that they cluster by morphology into six supergroups that organize the SEZ into discrete anatomical domains. We find that the majority of local SEZ interneurons are not classically polarized, suggesting rich local processing, whereas SEZ projection neurons tend to be classically polarized, conveying information to a limited number of higher brain regions. This study provides insight into the anatomical organization of the SEZ and generates resources that will facilitate further study of SEZ neurons and their contributions to sensory processing and behavior.

Data availability

Detailed information about the split-GAL4s and available imagery is included in a supplemental database (attached as a supporting file). Image data are publicly available and all lines may be ordered at http://splitgal4.janelia.org.

The following previously published data sets were used

Article and author information

Author details

  1. Gabriella R Sterne

    Molecular & Cell Biology, University of California Berkeley, Berkeley, United States
    For correspondence
    sternegr@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7221-648X
  2. Hideo Otsuna

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Barry J Dickson

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0715-892X
  4. Kristin Scott

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    kscott@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3150-7210

Funding

Howard Hughes Medical Institute

  • Gabriella R Sterne
  • Hideo Otsuna
  • Barry J Dickson

National Institute of Diabetes and Digestive and Kidney Diseases (F32DK117671)

  • Gabriella R Sterne

National Institute of General Medical Sciences (R01NS110060)

  • Gabriella R Sterne
  • Kristin Scott

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ilona C Grunwald Kadow, Technical University of Munich, Germany

Version history

  1. Received: June 26, 2021
  2. Preprint posted: August 8, 2021 (view preprint)
  3. Accepted: September 1, 2021
  4. Accepted Manuscript published: September 2, 2021 (version 1)
  5. Version of Record published: September 16, 2021 (version 2)

Copyright

© 2021, Sterne et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,604
    views
  • 669
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gabriella R Sterne
  2. Hideo Otsuna
  3. Barry J Dickson
  4. Kristin Scott
(2021)
Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain
eLife 10:e71679.
https://doi.org/10.7554/eLife.71679

Share this article

https://doi.org/10.7554/eLife.71679

Further reading

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.

    1. Neuroscience
    Augustine Xiaoran Yuan, Jennifer Colonell ... Timothy D Harris
    Tools and Resources

    Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. Advances in high-density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here, we propose a neuron tracking method that can identify the same cells independent of firing statistics, that are used by most existing methods. Our method is based on between-day non-rigid alignment of spike-sorted clusters. We verified the same cell identity in mice using measured visual receptive fields. This method succeeds on datasets separated from 1 to 47 days, with an 84% average recovery rate.