BNP facilitates NMB-encoded histaminergic itch via NPRC-NMBR crosstalk

Abstract

Histamine-dependent and -independent itch is conveyed by parallel peripheral neural pathways that express gastrin-releasing peptide (GRP) and neuromedin B (NMB), respectively, to the spinal cord of mice. B-type natriuretic peptide (BNP) has been proposed to transmit both types of itch via its receptor NPRA encoded by Npr1. However, BNP also binds to its cognate receptor, NPRC encoded by Npr3 with equal potency. Moreover, natriuretic peptides (NP) signal through the Gi-couped inhibitory cGMP pathway that is supposed to inhibit neuronal activity, raising the question of how BNP may transmit itch information. Here we report that Npr3 expression in laminae I-II of the dorsal horn partially overlaps with NMB receptor (NMBR) that transmits histaminergic itch via Gq-couped PLCb-Ca2+ signaling pathway. Functional studies indicate that NPRC is required for itch evoked by histamine but not chloroquine (CQ), a nonhistaminergic pruritogen. Importantly, BNP significantly facilitates scratching behaviors mediated by NMB, but not GRP. Consistently, BNP evoked Ca2+ responses in NMBR/NPRC HEK 293 cells and NMBR/NPRC dorsal horn neurons. These results reveal a previously unknown mechanism by which BNP facilitates NMB-encoded itch through a novel NPRC-NMBR cross-signaling in mice. Our studies uncover distinct modes of action for neuropeptides in transmission and modulation of itch in mice.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figure 1B, C, Figure 1-figure supplement 1A, B, Figure 1-figure supplement 2G, H, Figure 2A-F, Figure 3A-I, Figure 4F, G, Figure 5F, H, I, Figure 6A-C, and Figure 6-figure supplement 1A, B, E.

Article and author information

Author details

  1. Qing-Tao Meng

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xian-Yu Liu

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xue-Ting Liu

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Juan Liu

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Admire Munanairi

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Devin M Barry

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Benlong Liu

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Hua Jin

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Yu Sun

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Qianyi Yang

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Fang Gao

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Li Wan

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jiahang Peng

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Jin-Hua Jin

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Kai-Feng Shen

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Ray Kim

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Jun Yin

    Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Ailin Tao

    Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  19. Zhou-Feng Chen

    Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
    For correspondence
    chenz@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6859-7910

Funding

National Institutes of Health (R01NS094344,R01 DA037261-01A1 and R01NS113938-01A1)

  • Qing-Tao Meng
  • Xian-Yu Liu
  • Juan Liu
  • Admire Munanairi
  • Devin M Barry
  • Benlong Liu
  • Hua Jin
  • Yu Sun
  • Qianyi Yang
  • Fang Gao
  • Li Wan
  • Jiahang Peng
  • Jin-Hua Jin
  • Kai-Feng Shen
  • Ray Kim
  • Jun Yin
  • Zhou-Feng Chen

National Natural Science Foundation of China (82171764)

  • Xue-Ting Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with the guidelines of the National Institutes of Health and the International Association for the Study of Pain and were approved by the Animal Studies Committee at Washington University School of Medicine. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Washington University School of Medicine (#20190163).

Copyright

© 2021, Meng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,318
    views
  • 301
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qing-Tao Meng
  2. Xian-Yu Liu
  3. Xue-Ting Liu
  4. Juan Liu
  5. Admire Munanairi
  6. Devin M Barry
  7. Benlong Liu
  8. Hua Jin
  9. Yu Sun
  10. Qianyi Yang
  11. Fang Gao
  12. Li Wan
  13. Jiahang Peng
  14. Jin-Hua Jin
  15. Kai-Feng Shen
  16. Ray Kim
  17. Jun Yin
  18. Ailin Tao
  19. Zhou-Feng Chen
(2021)
BNP facilitates NMB-encoded histaminergic itch via NPRC-NMBR crosstalk
eLife 10:e71689.
https://doi.org/10.7554/eLife.71689

Share this article

https://doi.org/10.7554/eLife.71689

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.