Abstract

Color and polarization provide complementary information about the world and are detected by specialized photoreceptors. However, the downstream neural circuits that process these distinct modalities are incompletely understood in any animal. Using electron microscopy, we have systematically reconstructed the synaptic targets of the photoreceptors specialized to detect color and skylight polarization in Drosophila, and we have used light microscopy to confirm many of our findings. We identified known and novel downstream targets that are selective for different wavelengths or polarized light, and followed their projections to other areas in the optic lobes and the central brain. Our results revealed many synapses along the photoreceptor axons between brain regions, new pathways in the optic lobes, and spatially segregated projections to central brain regions. Strikingly, photoreceptors in the polarization-sensitive dorsal rim area target fewer cell types, and lack strong connections to the lobula, a neuropil involved in color processing. Our reconstruction identifies shared wiring and modality-specific specializations for color and polarization vision, and provides a comprehensive view of the first steps of the pathways processing color and polarized light inputs.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Supplementary File 1 and 3 contain all connectivity data. Supplementary File 2 provides images of all EM skeletons.All code and necessary data to perform the analysis and generate the figures of this manuscript will be available from https://github.com/reiserlab.All reconstructed neurons described in the manuscript will be made available at https://fafb.catmaid.virtualflybrain.org/.

The following previously published data sets were used

Article and author information

Author details

  1. Emil Kind

    Instititut für Biologie, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5228-7638
  2. Kit D Longden

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aljoscha Nern

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3822-489X
  4. Arthur Zhao

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2869-4393
  5. Gizem Sancer

    Institut für Biologie, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0367-9421
  6. Miriam A Flynn

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Connor W Laughland

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Bruck Gezahegn

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Henrique DF Ludwig

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Alex G Thomson

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Tessa Obrusnik

    Institut für Biologie, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Paula G Alarcón

    Institut für Biologie, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Heather Dionne

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Davi D Bock

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Gerald M Rubin

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8762-8703
  16. Michael B Reiser

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4108-4517
  17. Mathias F Wernet

    Institut für Biologie, Freie Universität Berlin, Berlin, Germany
    For correspondence
    mathias.wernet@fu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5233-2654

Funding

Howard Hughes Medical Institute

  • Kit D Longden
  • Aljoscha Nern
  • Arthur Zhao
  • Miriam A Flynn
  • Connor W Laughland
  • Bruck Gezahegn
  • Henrique DF Ludwig
  • Alex G Thomson
  • Heather Dionne
  • Davi D Bock
  • Gerald M Rubin
  • Michael B Reiser

Freie Universität Berlin

  • Emil Kind
  • Gizem Sancer
  • Tessa Obrusnik
  • Paula G Alarcón
  • Mathias F Wernet

Deutsche Forschungsgemeinschaft (WE 5761/2-1)

  • Mathias F Wernet

Deutsche Forschungsgemeinschaft (WE 5761/4-1)

  • Mathias F Wernet

Air Force Office of Scientific Research (FA9550-19-1-7005)

  • Mathias F Wernet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Kind et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,077
    views
  • 483
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emil Kind
  2. Kit D Longden
  3. Aljoscha Nern
  4. Arthur Zhao
  5. Gizem Sancer
  6. Miriam A Flynn
  7. Connor W Laughland
  8. Bruck Gezahegn
  9. Henrique DF Ludwig
  10. Alex G Thomson
  11. Tessa Obrusnik
  12. Paula G Alarcón
  13. Heather Dionne
  14. Davi D Bock
  15. Gerald M Rubin
  16. Michael B Reiser
  17. Mathias F Wernet
(2021)
Synaptic targets of photoreceptors specialized to detect color and skylight polarization in Drosophila
eLife 10:e71858.
https://doi.org/10.7554/eLife.71858

Share this article

https://doi.org/10.7554/eLife.71858

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.