Phylogenomic and mitogenomic data can accelerate inventorying of tropical beetles during the current biodiversity crisis

  1. Michal Motyka
  2. Dominik Kusy
  3. Matej Bocek
  4. Renata Bilkova
  5. Ladislav Bocak  Is a corresponding author
  1. Czech Advanced Technology Research Institute, Czech Republic

Abstract

Conservation efforts must be evidence-based, so rapid and economically feasible methods should be used to quantify diversity and distribution patterns. We have attempted to overcome current impediments to the gathering of biodiversity data by using integrative phylogenomic and three mtDNA fragment analyses. As a model, we sequenced the Metriorrhynchini beetle fauna, sampled from ~700 localities in three continents. The species-rich dataset included ~6,500 terminals, ~1,850 putative species delimited at 5% uncorrected pairwise threshold, possibly ~1,000 of them unknown to science. Neither type of data could alone answer our questions on biodiversity and phylogeny. The phylogenomic backbone enabled the integrative delimitation of robustly defined natural genus-group units that will inform future research. Using constrained mtDNA analysis, we identified the spatial structure of species diversity, very high species-level endemism, and a biodiversity hotspot in New Guinea. We suggest that focused field research and subsequent laboratory and bioinformatic workflow steps would substantially accelerate the inventorying of any hyperdiverse tropical group with several thousand species. The outcome would be a scaffold for the incorporation of further data from environmental sequencing and ecological studies. The database of sequences could set a benchmark for the spatiotemporal evaluation of biodiversity, would support evidence-based conservation planning, and would provide a robust framework for systematic, biogeographic, and evolutionary studies.

Data availability

All datasets are deposited in the Mendeley Data repository DOI: 10.17632/ntgg6k4fjx.1.

The following data sets were generated

Article and author information

Author details

  1. Michal Motyka

    Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute, Olomouc, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  2. Dominik Kusy

    Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute, Olomouc, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  3. Matej Bocek

    Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute, Olomouc, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3398-6078
  4. Renata Bilkova

    Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute, Olomouc, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Ladislav Bocak

    ZoologyLaboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute, Olomouc, Czech Republic
    For correspondence
    ladislav.bocak@upol.cz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6382-8006

Funding

Grantova agentura Ceske republiky (18-14942S)

  • Ladislav Bocak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Motyka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,041
    views
  • 173
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michal Motyka
  2. Dominik Kusy
  3. Matej Bocek
  4. Renata Bilkova
  5. Ladislav Bocak
(2021)
Phylogenomic and mitogenomic data can accelerate inventorying of tropical beetles during the current biodiversity crisis
eLife 10:e71895.
https://doi.org/10.7554/eLife.71895

Share this article

https://doi.org/10.7554/eLife.71895

Further reading

    1. Ecology
    Mercury Shitindo
    Insight

    Tracking wild pigs with GPS devices reveals how their social interactions could influence the spread of disease, offering new strategies for protecting agriculture, wildlife, and human health.

    1. Ecology
    2. Neuroscience
    Ralph E Peterson, Aman Choudhri ... Dan H Sanes
    Research Article

    In nature, animal vocalizations can provide crucial information about identity, including kinship and hierarchy. However, lab-based vocal behavior is typically studied during brief interactions between animals with no prior social relationship, and under environmental conditions with limited ethological relevance. Here, we address this gap by establishing long-term acoustic recordings from Mongolian gerbil families, a core social group that uses an array of sonic and ultrasonic vocalizations. Three separate gerbil families were transferred to an enlarged environment and continuous 20-day audio recordings were obtained. Using a variational autoencoder (VAE) to quantify 583,237 vocalizations, we show that gerbils exhibit a more elaborate vocal repertoire than has been previously reported and that vocal repertoire usage differs significantly by family. By performing gaussian mixture model clustering on the VAE latent space, we show that families preferentially use characteristic sets of vocal clusters and that these usage preferences remain stable over weeks. Furthermore, gerbils displayed family-specific transitions between vocal clusters. Since gerbils live naturally as extended families in complex underground burrows that are adjacent to other families, these results suggest the presence of a vocal dialect which could be exploited by animals to represent kinship. These findings position the Mongolian gerbil as a compelling animal model to study the neural basis of vocal communication and demonstrates the potential for using unsupervised machine learning with uninterrupted acoustic recordings to gain insights into naturalistic animal behavior.