The E3 Ubiquitin Ligase Mindbomb1 controls planar cell polarity-dependent convergent extension movements during zebrafish gastrulation

Abstract

Vertebrate Delta/Notch signaling involves multiple ligands, receptors and transcription factors. Delta endocytosis - a critical event for Notch activation - is however essentially controlled by the E3 Ubiquitin ligase Mindbomb1 (Mib1). Mib1 inactivation is therefore often used to inhibit Notch signaling. However, recent findings indicate that Mib1 function extends beyond the Notch pathway. We report a novel Notch-independent role of Mib1 in zebrafish gastrulation. mib1 null mutants and morphants display impaired Convergence Extension (CE) movements. Comparison of different mib1 mutants and functional rescue experiments indicate that Mib1 controls CE independently of Notch. Mib1-dependent CE defects can be rescued using the Planar Cell Polarity (PCP) downstream mediator RhoA, or enhanced through knock-down of the PCP ligand Wnt5b. Mib1 regulates CE through its RING Finger domains that have been implicated in substrate ubiquitination, suggesting that Mib1 may control PCP protein trafficking. Accordingly, we show that Mib1 controls the endocytosis of the PCP component Ryk and that Ryk internalization is required for CE. Numerous morphogenetic processes involve both Notch and PCP signaling. Our observation that during zebrafish gastrulation Mib1 exerts a Notch-independent control of PCP-dependent CE movements suggest that Mib1 loss of function phenotypes should be cautiously interpreted depending on the biological context.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Vishnu Muraleedharan Saraswathy

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Akshai Janardhana Kurup

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Priyanka Sharma

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Sophie Polès

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Morgane Poulain

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Maximilian Fürthauer

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    For correspondence
    furthauer@unice.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6344-6585

Funding

Fondation ARC pour la Recherche sur le Cancer (PJA20181208167)

  • Maximilian Fürthauer

Agence Nationale de la Recherche (ANR-17-CE13-0024-02)

  • Maximilian Fürthauer

Agence Nationale de la Recherche (ANR-11-LABX-0028-01)

  • Vishnu Muraleedharan Saraswathy

Ligue Contre le Cancer (IP/SC-17131)

  • Akshai Janardhana Kurup

Fondation pour la Recherche Médicale (FDT20140930987)

  • Priyanka Sharma

Human Frontier Science Program (CDA00036/2010)

  • Maximilian Fürthauer

Centre National de la Recherche Scientifique (ATIP2010)

  • Maximilian Fürthauer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were performed in the iBV Zebrafish facility (authorization #B-06-088-17) in accordance with the guidelines of the ethics committee Ciepal Azur and the iBV animal welfare committee (project authorizations NCE/2013-92, 19944-2019031818528380).

Copyright

© 2022, Saraswathy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,285
    views
  • 210
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vishnu Muraleedharan Saraswathy
  2. Akshai Janardhana Kurup
  3. Priyanka Sharma
  4. Sophie Polès
  5. Morgane Poulain
  6. Maximilian Fürthauer
(2022)
The E3 Ubiquitin Ligase Mindbomb1 controls planar cell polarity-dependent convergent extension movements during zebrafish gastrulation
eLife 11:e71928.
https://doi.org/10.7554/eLife.71928

Share this article

https://doi.org/10.7554/eLife.71928

Further reading

    1. Developmental Biology
    Michele Bertacchi, Gwendoline Maharaux ... Michèle Studer
    Research Article Updated

    The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.

    1. Developmental Biology
    Shannon H Carroll, Sogand Schafer ... Eric C Liao
    Research Article

    Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension (CE) during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar CE defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2-specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Overexpression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.