The E3 Ubiquitin Ligase Mindbomb1 controls planar cell polarity-dependent convergent extension movements during zebrafish gastrulation

Abstract

Vertebrate Delta/Notch signaling involves multiple ligands, receptors and transcription factors. Delta endocytosis - a critical event for Notch activation - is however essentially controlled by the E3 Ubiquitin ligase Mindbomb1 (Mib1). Mib1 inactivation is therefore often used to inhibit Notch signaling. However, recent findings indicate that Mib1 function extends beyond the Notch pathway. We report a novel Notch-independent role of Mib1 in zebrafish gastrulation. mib1 null mutants and morphants display impaired Convergence Extension (CE) movements. Comparison of different mib1 mutants and functional rescue experiments indicate that Mib1 controls CE independently of Notch. Mib1-dependent CE defects can be rescued using the Planar Cell Polarity (PCP) downstream mediator RhoA, or enhanced through knock-down of the PCP ligand Wnt5b. Mib1 regulates CE through its RING Finger domains that have been implicated in substrate ubiquitination, suggesting that Mib1 may control PCP protein trafficking. Accordingly, we show that Mib1 controls the endocytosis of the PCP component Ryk and that Ryk internalization is required for CE. Numerous morphogenetic processes involve both Notch and PCP signaling. Our observation that during zebrafish gastrulation Mib1 exerts a Notch-independent control of PCP-dependent CE movements suggest that Mib1 loss of function phenotypes should be cautiously interpreted depending on the biological context.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Vishnu Muraleedharan Saraswathy

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Akshai Janardhana Kurup

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Priyanka Sharma

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Sophie Polès

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Morgane Poulain

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Maximilian Fürthauer

    Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
    For correspondence
    furthauer@unice.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6344-6585

Funding

Fondation ARC pour la Recherche sur le Cancer (PJA20181208167)

  • Maximilian Fürthauer

Agence Nationale de la Recherche (ANR-17-CE13-0024-02)

  • Maximilian Fürthauer

Agence Nationale de la Recherche (ANR-11-LABX-0028-01)

  • Vishnu Muraleedharan Saraswathy

Ligue Contre le Cancer (IP/SC-17131)

  • Akshai Janardhana Kurup

Fondation pour la Recherche Médicale (FDT20140930987)

  • Priyanka Sharma

Human Frontier Science Program (CDA00036/2010)

  • Maximilian Fürthauer

Centre National de la Recherche Scientifique (ATIP2010)

  • Maximilian Fürthauer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were performed in the iBV Zebrafish facility (authorization #B-06-088-17) in accordance with the guidelines of the ethics committee Ciepal Azur and the iBV animal welfare committee (project authorizations NCE/2013-92, 19944-2019031818528380).

Copyright

© 2022, Saraswathy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,295
    views
  • 212
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vishnu Muraleedharan Saraswathy
  2. Akshai Janardhana Kurup
  3. Priyanka Sharma
  4. Sophie Polès
  5. Morgane Poulain
  6. Maximilian Fürthauer
(2022)
The E3 Ubiquitin Ligase Mindbomb1 controls planar cell polarity-dependent convergent extension movements during zebrafish gastrulation
eLife 11:e71928.
https://doi.org/10.7554/eLife.71928

Share this article

https://doi.org/10.7554/eLife.71928

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Elise S Bruguera, Jacob P Mahoney, William I Weis
    Research Article

    Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin. Unlike Wnt, the cystine knot ligand Norrin only signals through Fzd4 and additionally requires the co-receptor Tetraspanin12 (Tspan12); however, the mechanism underlying Tspan12-mediated signal enhancement is unclear. It has been proposed that Tspan12 integrates into the Norrin-Fzd4 complex to enhance Norrin-Fzd4 affinity or otherwise allosterically modulate Fzd4 signaling. Here, we measure direct, high-affinity binding between purified Norrin and Tspan12 in a lipid environment and use AlphaFold models to interrogate this interaction interface. We find that Tspan12 and Fzd4 can simultaneously bind Norrin and that a pre-formed Tspan12/Fzd4 heterodimer, as well as cells co-expressing Tspan12 and Fzd4, more efficiently capture low concentrations of Norrin than Fzd4 alone. We also show that Tspan12 competes with both heparan sulfate proteoglycans and LRP6 for Norrin binding and that Tspan12 does not impact Fzd4-Dvl affinity in the presence or absence of Norrin. Our findings suggest that Tspan12 does not allosterically enhance Fzd4 binding to Norrin or Dvl, but instead functions to directly capture Norrin upstream of signaling.

    1. Developmental Biology
    Pablo Sanchez Bosch, Bomsoo Cho, Jeffrey D Axelrod
    Research Article

    The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion. Despite its ubiquitous presence, the mechanisms governing cell competition, particularly those common to developmental competition and tumorigenesis, are poorly understood. Here, we show that in Drosophila, the planar cell polarity (PCP) protein Flamingo (Fmi) is required by winners to maintain their status during cell competition in malignant tumors to overtake healthy tissue, in early pre-malignant cells when they overproliferate among wildtype cells, in healthy cells when they later eliminate pre-malignant cells, and by supercompetitors as they compete to occupy excessive territory within wildtype tissues. ‘Would-be’ winners that lack Fmi are unable to overproliferate, and instead become losers. We demonstrate that the role of Fmi in cell competition is independent of PCP, and that it uses a distinct mechanism that may more closely resemble one used in other less well-defined functions of Fmi.