Control of neurotransmitter release by two distinctmembrane-binding faces of the Munc13-1 C­1C2B region

  1. Marcial Camacho
  2. Bradley Quade
  3. Thorsten Trimbuch
  4. Junjie Xu
  5. Levent Sari
  6. Josep Rizo  Is a corresponding author
  7. Christian Rosenmund  Is a corresponding author
  1. Charité-Universitätsmedizin Berlin, Germany
  2. University of Texas Southwestern Medical Center, United States
  3. Charité Universitätsmedizin Berlin, Germany
  4. The University of Texas Southwestern Medical Center, United States

Abstract

Munc13-1 plays a central role in neurotransmitter release through its conserved C-terminal region, which includes a diacyglycerol (DAG)-binding C1 domain, a Ca2+/PIP2-binding C2B domain, a MUN domain and a C2C domain. Munc13-1 was proposed to bridge synaptic vesicles to the plasma membrane through distinct interactions of the C­1C2B region with the plasma membrane: i) one involving a polybasic face that is expected to yield a perpendicular orientation of Munc13-1 and hinder release; and ii) another involving the DAG-Ca2+-PIP2-binding face that is predicted to result in a slanted orientation and facilitate release. Here we have tested this model and investigated the role of the C­1C2B region in neurotransmitter release. We find that K603E or R769E point mutations in the polybasic face severely impair Ca2+-independent liposome bridging and fusion in in vitro reconstitution assays, and synaptic vesicle priming in primary murine hippocampal cultures. A K720E mutation in the polybasic face and a K706E mutation in the C2B domain Ca2+-binding loops have milder effects in reconstitution assays and do not affect vesicle priming, but enhance or impair Ca2+-evoked release, respectively. The phenotypes caused by combining these mutations are dominated by the K603E and R769E mutations. Our results show that the C1-C2B region of Munc13-1 plays a central role in vesicle priming and support the notion that two distinct faces of this region control neurotransmitter release and short-term presynaptic plasticity.

Data availability

Source data files are provided for all data figure panels.

Article and author information

Author details

  1. Marcial Camacho

    Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2367-1259
  2. Bradley Quade

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5330-1355
  3. Thorsten Trimbuch

    Department of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Junjie Xu

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Levent Sari

    Green Center for Molecular, Computational, and Systems Biology, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Josep Rizo

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Jose.Rizo-Rey@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1773-8311
  7. Christian Rosenmund

    Institut für Neurophysiologie, Charité Universitätsmedizin Berlin, Berlin, Germany
    For correspondence
    christian.rosenmund@charite.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3905-2444

Funding

National Institute of Neurological Disorders and Stroke (R35 NS097333)

  • Josep Rizo

Welch Foundation (I-1304)

  • Josep Rizo

German Research Council (958)

  • Christian Rosenmund

Reinhart Koselleck project

  • Christian Rosenmund

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal Welfare Committee of Charité - Universitätsmedizin Berlin and the Berlin state government agency for Health and Social Services approved all protocols for animal maintenance and experiments (license no. G106/20).

Copyright

© 2021, Camacho et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,245
    views
  • 256
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marcial Camacho
  2. Bradley Quade
  3. Thorsten Trimbuch
  4. Junjie Xu
  5. Levent Sari
  6. Josep Rizo
  7. Christian Rosenmund
(2021)
Control of neurotransmitter release by two distinctmembrane-binding faces of the Munc13-1 C­1C2B region
eLife 10:e72030.
https://doi.org/10.7554/eLife.72030

Share this article

https://doi.org/10.7554/eLife.72030

Further reading

    1. Neuroscience
    Alessandro Piccin, Anne-Emilie Allain ... Angelo Contarino
    Research Article

    Substance-induced social behavior deficits dramatically worsen the clinical outcome of substance use disorders; yet, the underlying mechanisms remain poorly understood. Herein, we investigated the role for the corticotropin-releasing factor receptor 1 (CRF1) in the acute sociability deficits induced by morphine and the related activity of oxytocin (OXY)- and arginine-vasopressin (AVP)-expressing neurons of the paraventricular nucleus of the hypothalamus (PVN). For this purpose, we used both the CRF1 receptor-preferring antagonist compound antalarmin and the genetic mouse model of CRF1 receptor-deficiency. Antalarmin completely abolished sociability deficits induced by morphine in male, but not in female, C57BL/6J mice. Accordingly, genetic CRF1 receptor-deficiency eliminated morphine-induced sociability deficits in male mice. Ex vivo electrophysiology studies showed that antalarmin also eliminated morphine-induced firing of PVN neurons in male, but not in female, C57BL/6J mice. Likewise, genetic CRF1 receptor-deficiency reduced morphine-induced firing of PVN neurons in a CRF1 gene expression-dependent manner. The electrophysiology results consistently mirrored the behavioral results, indicating a link between morphine-induced PVN activity and sociability deficits. Interestingly, in male mice antalarmin abolished morphine-induced firing in neurons co-expressing OXY and AVP, but not in neurons expressing only AVP. In contrast, in female mice antalarmin did not affect morphine-induced firing of neurons co-expressing OXY and AVP or only OXY, indicating a selective sex-specific role for the CRF1 receptor in opiate-induced PVN OXY activity. The present findings demonstrate a major, sex-linked, role for the CRF1 receptor in sociability deficits and related brain alterations induced by morphine, suggesting new therapeutic strategy for opiate use disorders.

    1. Neuroscience
    Mathias Guayasamin, Lewis R Depaauw-Holt ... Ciaran Murphy-Royal
    Research Article

    Early-life stress can have lifelong consequences, enhancing stress susceptibility and resulting in behavioural and cognitive deficits. While the effects of early-life stress on neuronal function have been well-described, we still know very little about the contribution of non-neuronal brain cells. Investigating the complex interactions between distinct brain cell types is critical to fully understand how cellular changes manifest as behavioural deficits following early-life stress. Here, using male and female mice we report that early-life stress induces anxiety-like behaviour and fear generalisation in an amygdala-dependent learning and memory task. These behavioural changes were associated with impaired synaptic plasticity, increased neural excitability, and astrocyte hypofunction. Genetic perturbation of amygdala astrocyte function by either reducing astrocyte calcium activity or reducing astrocyte network function was sufficient to replicate cellular, synaptic, and fear memory generalisation associated with early-life stress. Our data reveal a role of astrocytes in tuning emotionally salient memory and provide mechanistic links between early-life stress, astrocyte hypofunction, and behavioural deficits.