NHE6-depletion corrects ApoE4-mediated synaptic impairments and reduces amyloid plaque load

Abstract

Apolipoprotein E4 (ApoE4) is the most important and prevalent risk factor for late-onset Alzheimer's disease (AD). The isoelectric point of ApoE4 matches the pH of the early endosome (EE), causing its delayed dissociation from ApoE receptors and hence impaired endolysosomal trafficking, disruption of synaptic homeostasis and reduced amyloid clearance. We have shown that enhancing endosomal acidification by inhibiting the EE-specific sodium-hydrogen exchanger 6 (NHE6) restores vesicular trafficking and normalizes synaptic homeostasis. Remarkably and unexpectedly, loss of NHE6 (encoded by the gene Slc9a6) in mice effectively suppressed amyloid deposition even in the absence of ApoE4, suggesting that accelerated acidification of early endosomes caused by the absence of NHE6 occludes the effect of ApoE on amyloid plaque formation. NHE6 suppression or inhibition may thus be a universal, ApoE-independent approach to prevent amyloid buildup in the brain. These findings suggest a novel therapeutic approach for the prevention of AD by which partial NHE6 inhibition reverses the ApoE4 induced endolysosomal trafficking defect and reduces plaque load.

Data availability

All relevant data are included in the manuscript

Article and author information

Author details

  1. Theresa Pohlkamp

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3923-1917
  2. Xunde Xian

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    Xunde Xian, Inventor of Patent: https://patents.google.com/patent/US20110136832A1/en.
  3. Connie H Wong

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6452-7966
  4. Murat S Durakoglugil

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4483-8166
  5. Gordon Chandler Werthmann

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  6. Takaomi C Saido

    Laboratory for Proteolytic Neuroscience, Riken Center for Brain Science, Wako, Japan
    Competing interests
    No competing interests declared.
  7. Bret M Evers

    Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5686-0315
  8. Charles L White III

    Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3870-2804
  9. Jade Connor

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  10. Robert E Hammer

    Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  11. Joachim Herz

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    joachim.herz@utsouthwestern.edu
    Competing interests
    Joachim Herz, Inventor of Patent: https://patents.google.com/patent/US20110136832A1/en.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8506-3400

Funding

National Institutes of Health

  • Joachim Herz

BrightFocus Foundation

  • Joachim Herz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were performed according to the approved guidelines (Animal Welfare Assurance Number D16-00296) for Institutional Animal Care and Use Committee (IACUC) at the University of Texas Southwestern Medical Center at Dallas.

Copyright

© 2021, Pohlkamp et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,038
    views
  • 524
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Theresa Pohlkamp
  2. Xunde Xian
  3. Connie H Wong
  4. Murat S Durakoglugil
  5. Gordon Chandler Werthmann
  6. Takaomi C Saido
  7. Bret M Evers
  8. Charles L White III
  9. Jade Connor
  10. Robert E Hammer
  11. Joachim Herz
(2021)
NHE6-depletion corrects ApoE4-mediated synaptic impairments and reduces amyloid plaque load
eLife 10:e72034.
https://doi.org/10.7554/eLife.72034

Share this article

https://doi.org/10.7554/eLife.72034

Further reading

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.

    1. Neuroscience
    Rongxin Fang, Aaron Halpern ... Xiaowei Zhuang
    Tools and Resources

    Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.