NHE6-depletion corrects ApoE4-mediated synaptic impairments and reduces amyloid plaque load

Abstract

Apolipoprotein E4 (ApoE4) is the most important and prevalent risk factor for late-onset Alzheimer's disease (AD). The isoelectric point of ApoE4 matches the pH of the early endosome (EE), causing its delayed dissociation from ApoE receptors and hence impaired endolysosomal trafficking, disruption of synaptic homeostasis and reduced amyloid clearance. We have shown that enhancing endosomal acidification by inhibiting the EE-specific sodium-hydrogen exchanger 6 (NHE6) restores vesicular trafficking and normalizes synaptic homeostasis. Remarkably and unexpectedly, loss of NHE6 (encoded by the gene Slc9a6) in mice effectively suppressed amyloid deposition even in the absence of ApoE4, suggesting that accelerated acidification of early endosomes caused by the absence of NHE6 occludes the effect of ApoE on amyloid plaque formation. NHE6 suppression or inhibition may thus be a universal, ApoE-independent approach to prevent amyloid buildup in the brain. These findings suggest a novel therapeutic approach for the prevention of AD by which partial NHE6 inhibition reverses the ApoE4 induced endolysosomal trafficking defect and reduces plaque load.

Data availability

All relevant data are included in the manuscript

Article and author information

Author details

  1. Theresa Pohlkamp

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3923-1917
  2. Xunde Xian

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    Xunde Xian, Inventor of Patent: https://patents.google.com/patent/US20110136832A1/en.
  3. Connie H Wong

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6452-7966
  4. Murat S Durakoglugil

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4483-8166
  5. Gordon Chandler Werthmann

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  6. Takaomi C Saido

    Laboratory for Proteolytic Neuroscience, Riken Center for Brain Science, Wako, Japan
    Competing interests
    No competing interests declared.
  7. Bret M Evers

    Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5686-0315
  8. Charles L White III

    Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3870-2804
  9. Jade Connor

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  10. Robert E Hammer

    Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  11. Joachim Herz

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    joachim.herz@utsouthwestern.edu
    Competing interests
    Joachim Herz, Inventor of Patent: https://patents.google.com/patent/US20110136832A1/en.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8506-3400

Funding

National Institutes of Health

  • Joachim Herz

BrightFocus Foundation

  • Joachim Herz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were performed according to the approved guidelines (Animal Welfare Assurance Number D16-00296) for Institutional Animal Care and Use Committee (IACUC) at the University of Texas Southwestern Medical Center at Dallas.

Reviewing Editor

  1. Jeannie Chin, Baylor College of Medicine, United States

Version history

  1. Preprint posted: March 23, 2021 (view preprint)
  2. Received: July 7, 2021
  3. Accepted: September 19, 2021
  4. Accepted Manuscript published: October 7, 2021 (version 1)
  5. Version of Record published: October 26, 2021 (version 2)

Copyright

© 2021, Pohlkamp et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,508
    Page views
  • 453
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Theresa Pohlkamp
  2. Xunde Xian
  3. Connie H Wong
  4. Murat S Durakoglugil
  5. Gordon Chandler Werthmann
  6. Takaomi C Saido
  7. Bret M Evers
  8. Charles L White III
  9. Jade Connor
  10. Robert E Hammer
  11. Joachim Herz
(2021)
NHE6-depletion corrects ApoE4-mediated synaptic impairments and reduces amyloid plaque load
eLife 10:e72034.
https://doi.org/10.7554/eLife.72034

Further reading

    1. Neuroscience
    Jiajie Zou, Yuran Zhang ... Nai Ding
    Research Article

    The computational principles underlying attention allocation in complex goal-directed tasks remain elusive. Goal-directed reading, that is, reading a passage to answer a question in mind, is a common real-world task that strongly engages attention. Here, we investigate what computational models can explain attention distribution in this complex task. We show that the reading time on each word is predicted by the attention weights in transformer-based deep neural networks (DNNs) optimized to perform the same reading task. Eye tracking further reveals that readers separately attend to basic text features and question-relevant information during first-pass reading and rereading, respectively. Similarly, text features and question relevance separately modulate attention weights in shallow and deep DNN layers. Furthermore, when readers scan a passage without a question in mind, their reading time is predicted by DNNs optimized for a word prediction task. Therefore, we offer a computational account of how task optimization modulates attention distribution during real-world reading.

    1. Neuroscience
    Christian Brodbeck, Proloy Das ... Jonathan Z Simon
    Tools and Resources

    Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression using temporal response functions (TRFs) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: 1) Is there a significant neural representation corresponding to this predictor variable? And if so, 2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses.