Shallow neural networks trained to detect collisions recover features of visual loom-selective neurons

  1. Baohua Zhou
  2. Zifan Li
  3. Sunnie Kim
  4. John Lafferty  Is a corresponding author
  5. Damon A Clark  Is a corresponding author
  1. Yale University, United States

Abstract

Animals have evolved sophisticated visual circuits to solve a vital inference problem: detecting whether or not a visual signal corresponds to an object on a collision course. Such events are detected by specific circuits sensitive to visual looming, or objects increasing in size. Various computational models have been developed for these circuits, but how the collision-detection inference problem itself shapes the computational structures of these circuits remains unknown. Here, inspired by the distinctive structures of LPLC2 neurons in the visual system of Drosophila, we build anatomically-constrained shallow neural network models and train them to identify visual signals that correspond to impending collisions. Surprisingly, the optimization arrives at two distinct, opposing solutions, only one of which matches the actual dendritic weighting of LPLC2 neurons. Both solutions can solve the inference problem with high accuracy when the population size is large enough. The LPLC2-like solutions reproduces experimentally observed LPLC2 neuron responses for many stimuli, and reproduces canonical tuning of loom sensitive neurons, even though the models are never trained on neural data. Thus, LPLC2 neuron properties and tuning are predicted by optimizing an anatomically-constrained neural network to detect impending collisions. More generally, these results illustrate how optimizing inference tasks that are important for an animal's perceptual goals can reveal and explain computational properties of specific sensory neurons.

Data availability

Code to perform all simulations in this paper and to reproduce all figures is available at http://www.github.com/ClarkLabCode/LoomDetectionANN.

Article and author information

Author details

  1. Baohua Zhou

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Zifan Li

    Department of Statistics and Data Science, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sunnie Kim

    Department of Statistics and Data Science, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8901-7233
  4. John Lafferty

    Department of Statistics and Data Science, Yale University, New Haven, United States
    For correspondence
    john.lafferty@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. Damon A Clark

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    For correspondence
    damon.clark@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8487-700X

Funding

National Institutes of Health (R01EY026555)

  • Baohua Zhou
  • Damon A Clark

National Science Foundation (CCF-1839308)

  • Baohua Zhou
  • John Lafferty
  • Damon A Clark

National Science Foundation (DMS-1513594)

  • John Lafferty

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,335
    views
  • 184
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Baohua Zhou
  2. Zifan Li
  3. Sunnie Kim
  4. John Lafferty
  5. Damon A Clark
(2022)
Shallow neural networks trained to detect collisions recover features of visual loom-selective neurons
eLife 11:e72067.
https://doi.org/10.7554/eLife.72067

Share this article

https://doi.org/10.7554/eLife.72067

Further reading

    1. Neuroscience
    Mehrdad Kashefi, Sasha Reschechtko ... J Andrew Pruszynski
    Research Article

    Real-world actions often comprise a series of movements that cannot be entirely planned before initiation. When these actions are executed rapidly, the planning of multiple future movements needs to occur simultaneously with the ongoing action. How the brain solves this task remains unknown. Here, we address this question with a new sequential arm reaching paradigm that manipulates how many future reaches are available for planning while controlling execution of the ongoing reach. We show that participants plan at least two future reaches simultaneously with an ongoing reach. Further, the planning processes of the two future reaches are not independent of one another. Evidence that the planning processes interact is twofold. First, correcting for a visual perturbation of the ongoing reach target is slower when more future reaches are planned. Second, the curvature of the current reach is modified based on the next reach only when their planning processes temporally overlap. These interactions between future planning processes may enable smooth production of sequential actions by linking individual segments of a long sequence at the level of motor planning.

    1. Neuroscience
    Raeed H Chowdhury
    Insight

    When carrying out a sequence of movements, humans can plan several steps in advance to make the movement smooth.