Shallow neural networks trained to detect collisions recover features of visual loom-selective neurons

  1. Baohua Zhou
  2. Zifan Li
  3. Sunnie Kim
  4. John Lafferty  Is a corresponding author
  5. Damon A Clark  Is a corresponding author
  1. Yale University, United States

Abstract

Animals have evolved sophisticated visual circuits to solve a vital inference problem: detecting whether or not a visual signal corresponds to an object on a collision course. Such events are detected by specific circuits sensitive to visual looming, or objects increasing in size. Various computational models have been developed for these circuits, but how the collision-detection inference problem itself shapes the computational structures of these circuits remains unknown. Here, inspired by the distinctive structures of LPLC2 neurons in the visual system of Drosophila, we build anatomically-constrained shallow neural network models and train them to identify visual signals that correspond to impending collisions. Surprisingly, the optimization arrives at two distinct, opposing solutions, only one of which matches the actual dendritic weighting of LPLC2 neurons. Both solutions can solve the inference problem with high accuracy when the population size is large enough. The LPLC2-like solutions reproduces experimentally observed LPLC2 neuron responses for many stimuli, and reproduces canonical tuning of loom sensitive neurons, even though the models are never trained on neural data. Thus, LPLC2 neuron properties and tuning are predicted by optimizing an anatomically-constrained neural network to detect impending collisions. More generally, these results illustrate how optimizing inference tasks that are important for an animal's perceptual goals can reveal and explain computational properties of specific sensory neurons.

Data availability

Code to perform all simulations in this paper and to reproduce all figures is available at http://www.github.com/ClarkLabCode/LoomDetectionANN.

Article and author information

Author details

  1. Baohua Zhou

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Zifan Li

    Department of Statistics and Data Science, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sunnie Kim

    Department of Statistics and Data Science, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8901-7233
  4. John Lafferty

    Department of Statistics and Data Science, Yale University, New Haven, United States
    For correspondence
    john.lafferty@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. Damon A Clark

    Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    For correspondence
    damon.clark@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8487-700X

Funding

National Institutes of Health (R01EY026555)

  • Baohua Zhou
  • Damon A Clark

National Science Foundation (CCF-1839308)

  • Baohua Zhou
  • John Lafferty
  • Damon A Clark

National Science Foundation (DMS-1513594)

  • John Lafferty

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,493
    views
  • 200
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Baohua Zhou
  2. Zifan Li
  3. Sunnie Kim
  4. John Lafferty
  5. Damon A Clark
(2022)
Shallow neural networks trained to detect collisions recover features of visual loom-selective neurons
eLife 11:e72067.
https://doi.org/10.7554/eLife.72067

Share this article

https://doi.org/10.7554/eLife.72067

Further reading

    1. Neuroscience
    Mihály Vöröslakos, Yunchang Zhang ... György Buzsáki
    Tools and Resources

    Brain states fluctuate between exploratory and consummatory phases of behavior. These state changes affect both internal computation and the organism’s responses to sensory inputs. Understanding neuronal mechanisms supporting exploratory and consummatory states and their switching requires experimental control of behavioral shifts and collecting sufficient amounts of brain data. To achieve this goal, we developed the ThermoMaze, which exploits the animal’s natural warmth-seeking homeostatic behavior. By decreasing the floor temperature and selectively heating unmarked areas, we observed that mice avoided the aversive state by exploring the maze and finding the warm spot. In its design, the ThermoMaze is analogous to the widely used water maze but without the inconvenience of a wet environment and, therefore, allows the collection of physiological data in many trials. We combined the ThermoMaze with electrophysiology recording, and report that spiking activity of hippocampal CA1 neurons during sharp-wave ripple events encode the position of mice. Thus, place-specific firing is not confined to locomotion and associated theta oscillations but persist during waking immobility and sleep at the same location. The ThermoMaze will allow for detailed studies of brain correlates of immobility, preparatory–consummatory transitions, and open new options for studying behavior-mediated temperature homeostasis.

    1. Neuroscience
    Sergio Casas-Tinto, Nuria Garcia-Guillen, María Losada-Perez
    Short Report

    As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.