Inflammasome activation leads to cDC1-independent cross-priming of CD8 T cells by epithelial cell derived antigen

  1. Katherine A Deets
  2. Randilea Nichols Doyle
  3. Isabella Rauch
  4. Russell E Vance  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Oregon Health and Science University, United States

Abstract

The innate immune system detects pathogens and initiates adaptive immune responses. Inflammasomes are central components of the innate immune system, but whether inflammasomes provide sufficient signals to activate adaptive immunity is unclear. In intestinal epithelial cells (IECs), inflammasomes activate a lytic form of cell death called pyroptosis, leading to epithelial cell expulsion and the release of cytokines. Here we employed a genetic system to show that simultaneous antigen expression and inflammasome activation specifically in IECs is sufficient to activate CD8+ T cells. By genetic elimination of direct T cell priming by IECs, we found that IEC-derived antigens are cross-presented to CD8+ T cells. However, cross-presentation of IEC-derived antigen to CD8+ T cells only partially depended on IEC pyroptosis. In the absence of inflammasome activation, cross-priming of CD8+ T cells required Batf3+ dendritic cells (cDC1), whereas cross-priming in the presence of pyroptosis required a Zbtb26+ but Batf3-independent cDC population. These data suggest the existence of parallel pyroptosis-dependent and pyroptosis-independent pathways for cross-presentation of IEC-derived antigens.

Data availability

Immunofluorescence images have been deposited in Dryad and can be found at https://doi.org/10.6078/D1ST46. All remaining data generated or analyzed during this study are included in the manuscript and supporting files; Source Data files have been provided for Figures 1-6, Figure 3-figure supplement 1, Figure 4-figure supplement 1, Figure 5-figure supplement 1, Figure 5-figure supplement 4, Figure 6-figure supplement 2.

The following data sets were generated

Article and author information

Author details

  1. Katherine A Deets

    Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Randilea Nichols Doyle

    Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Isabella Rauch

    Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, United States
    Competing interests
    No competing interests declared.
  4. Russell E Vance

    Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    rvance@berkeley.edu
    Competing interests
    Russell E Vance, consults for Ventus Therapeutics and Tempest Therapeutics and is a Reviewing Editor for eLife..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6686-3912

Funding

National Institutes of Health (AI075039)

  • Russell E Vance

National Institutes of Health (AI063302)

  • Russell E Vance

National Institutes of Health (AI155634)

  • Russell E Vance

Howard Hughes Medical Institute (Investigator Award)

  • Russell E Vance

National Institutes of Health (5T32GM007232)

  • Katherine A Deets

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animal studies were approved by the UC Berkeley Animal Care and Use Committee (current protocol number: AUP-2014-09-6665-2).

Copyright

© 2021, Deets et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,626
    views
  • 247
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katherine A Deets
  2. Randilea Nichols Doyle
  3. Isabella Rauch
  4. Russell E Vance
(2021)
Inflammasome activation leads to cDC1-independent cross-priming of CD8 T cells by epithelial cell derived antigen
eLife 10:e72082.
https://doi.org/10.7554/eLife.72082

Share this article

https://doi.org/10.7554/eLife.72082

Further reading

    1. Immunology and Inflammation
    Yan Qian, Qiannv Liu ... Pengyan Xia
    Research Article

    The T6SS of Pseudomonas aeruginosa plays an essential role in the establishment of chronic infections. Inflammasome-mediated inflammatory cytokines are crucial for host defense against bacterial infections. We found that P. aeruginosa infection activates the non-canonical inflammasome in macrophages, yet it inhibits the downstream activation of the NLRP3 inflammasome. The VgrG2b of P. aeruginosa is recognized and cleaved by caspase-11, generating a free C-terminal fragment. The VgrG2b C-terminus can bind to NLRP3, inhibiting the activation of the NLRP3 inflammasome by rejecting NEK7 binding to NLRP3. Administration of a specific peptide that inhibits caspase-11 cleavage of VgrG2b significantly improves mouse survival during infection. Our discovery elucidates a mechanism by which P. aeruginosa inhibits host immune response, providing a new approach for the future clinical treatment of P. aeruginosa infections.

    1. Immunology and Inflammation
    2. Medicine
    Ole Bæk, Tik Muk ... Duc Ninh Nguyen
    Research Article

    Preterm infants are susceptible to neonatal sepsis, a syndrome of pro-inflammatory activity, organ damage, and altered metabolism following infection. Given the unique metabolic challenges and poor glucose regulatory capacity of preterm infants, their glucose intake during infection may have a high impact on the degree of metabolism dysregulation and organ damage. Using a preterm pig model of neonatal sepsis, we previously showed that a drastic restriction in glucose supply during infection protects against sepsis via suppression of glycolysis-induced inflammation, but results in severe hypoglycemia. Now we explored clinically relevant options for reducing glucose intake to decrease sepsis risk, without causing hypoglycemia and further explore the involvement of the liver in these protective effects. We found that a reduced glucose regime during infection increased survival via reduced pro-inflammatory response, while maintaining normoglycemia. Mechanistically, this intervention enhanced hepatic oxidative phosphorylation and possibly gluconeogenesis, and dampened both circulating and hepatic inflammation. However, switching from a high to a reduced glucose supply after the debut of clinical symptoms did not prevent sepsis, suggesting metabolic conditions at the start of infection are key in driving the outcome. Finally, an early therapy with purified human inter-alpha inhibitor protein, a liver-derived anti-inflammatory protein, partially reversed the effects of low parenteral glucose provision, likely by inhibiting neutrophil functions that mediate pathogen clearance. Our findings suggest a clinically relevant regime of reduced glucose supply for infected preterm infants could prevent or delay the development of sepsis in vulnerable neonates.