Specialized neurons in the right habenula mediate response to aversive olfactory cues

  1. Jung-Hwa Choi
  2. Erik R Duboue
  3. Michelle Macurak
  4. Jean-Michel Chanchu
  5. Marnie E Halpern  Is a corresponding author
  1. Dartmouth College, United States
  2. Florida Atlantic University, United States
  3. Carnegie Institution for Science, United States

Abstract

Hemispheric specializations are well studied at the functional level but less is known about the underlying neural mechanisms. We identified a small cluster of cholinergic neurons in the dorsal habenula (dHb) of zebrafish, defined by their expression of the lecithin retinol acyltransferase domain containing 2a (lratd2a) gene and their efferent connections with a subregion of the ventral interpeduncular nucleus (vIPN). The lratd2a-expressing neurons in the right dHb are innervated by a subset of mitral cells from both the left and right olfactory bulb and are activated upon exposure to the odorant cadaverine that is repellent to adult zebrafish. Using an intersectional strategy to drive expression of the botulinum neurotoxin specifically in these neurons, we find that adults no longer show aversion to cadaverine. Mutants with left-isomerized dHb that lack these neurons are also less repelled by cadaverine and their behavioral response to alarm substance, a potent aversive cue, is diminished. However, mutants in which both dHb have right identity appear more reactive to alarm substance. The results implicate an asymmetric dHb-vIPN neural circuit in the processing of repulsive olfactory cues and in modulating the resultant behavioral response.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1-5.Behavioral analyses were performed using custom written scripts in MATLAB and uploaded as Source Code Files.

Article and author information

Author details

  1. Jung-Hwa Choi

    Geisel School of Medicine at Dartmouth, Department of Molecular and Systems Biology, Dartmouth College, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Erik R Duboue

    Harriet Wilkes Honors College, Florida Atlantic University, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3303-5149
  3. Michelle Macurak

    Department of Embryology, Carnegie Institution for Science, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-Michel Chanchu

    Department of Embryology, Carnegie Institution for Science, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Marnie E Halpern

    Geisel School of Medicine at Dartmouth, Department of Molecular and Systems Biology, Dartmouth College, Hanover, United States
    For correspondence
    Marnie.E.Halpern@Dartmouth.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3634-9058

Funding

National Institutes of Health (R01HD078220)

  • Marnie E Halpern

National Institutes of Health (R37HD091280)

  • Marnie E Halpern

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All zebrafish protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of the Carnegie Institution for Science [Protocol #122] or Dartmouth College [Protocol #00002253(m3a)].

Copyright

© 2021, Choi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,042
    views
  • 264
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jung-Hwa Choi
  2. Erik R Duboue
  3. Michelle Macurak
  4. Jean-Michel Chanchu
  5. Marnie E Halpern
(2021)
Specialized neurons in the right habenula mediate response to aversive olfactory cues
eLife 10:e72345.
https://doi.org/10.7554/eLife.72345

Share this article

https://doi.org/10.7554/eLife.72345

Further reading

    1. Neuroscience
    Yisi Liu, Pu Wang ... Hongwei Zhou
    Short Report

    The increasing use of tissue clearing techniques underscores the urgent need for cost-effective and simplified deep imaging methods. While traditional inverted confocal microscopes excel in high-resolution imaging of tissue sections and cultured cells, they face limitations in deep imaging of cleared tissues due to refractive index mismatches between the immersion media of objectives and sample container. To overcome these challenges, the RIM-Deep was developed to significantly improve deep imaging capabilities without compromising the normal function of the confocal microscope. This system facilitates deep immunofluorescence imaging of the prefrontal cortex in cleared macaque tissue, extending imaging depth from 2 mm to 5 mm. Applied to an intact and cleared Thy1-EGFP mouse brain, the system allowed for clear axonal visualization at high imaging depth. Moreover, this advancement enables large-scale, deep 3D imaging of intact tissues. In principle, this concept can be extended to any imaging modality, including existing inverted wide-field, confocal, and two-photon microscopy. This would significantly upgrade traditional laboratory configurations and facilitate the study of connectomes in the brain and other tissues.

    1. Neuroscience
    Damian Koevoet, Laura Van Zantwijk ... Christoph Strauch
    Research Article

    What determines where to move the eyes? We recently showed that pupil size, a well-established marker of effort, also reflects the effort associated with making a saccade (‘saccade costs’). Here, we demonstrate saccade costs to critically drive saccade selection: when choosing between any two saccade directions, the least costly direction was consistently preferred. Strikingly, this principle even held during search in natural scenes in two additional experiments. When increasing cognitive demand experimentally through an auditory counting task, participants made fewer saccades and especially cut costly directions. This suggests that the eye-movement system and other cognitive operations consume similar resources that are flexibly allocated among each other as cognitive demand changes. Together, we argue that eye-movement behavior is tuned to adaptively minimize saccade-inherent effort.