Specialized neurons in the right habenula mediate response to aversive olfactory cues

  1. Jung-Hwa Choi
  2. Erik R Duboue
  3. Michelle Macurak
  4. Jean-Michel Chanchu
  5. Marnie E Halpern  Is a corresponding author
  1. Dartmouth College, United States
  2. Florida Atlantic University, United States
  3. Carnegie Institution for Science, United States

Abstract

Hemispheric specializations are well studied at the functional level but less is known about the underlying neural mechanisms. We identified a small cluster of cholinergic neurons in the dorsal habenula (dHb) of zebrafish, defined by their expression of the lecithin retinol acyltransferase domain containing 2a (lratd2a) gene and their efferent connections with a subregion of the ventral interpeduncular nucleus (vIPN). The lratd2a-expressing neurons in the right dHb are innervated by a subset of mitral cells from both the left and right olfactory bulb and are activated upon exposure to the odorant cadaverine that is repellent to adult zebrafish. Using an intersectional strategy to drive expression of the botulinum neurotoxin specifically in these neurons, we find that adults no longer show aversion to cadaverine. Mutants with left-isomerized dHb that lack these neurons are also less repelled by cadaverine and their behavioral response to alarm substance, a potent aversive cue, is diminished. However, mutants in which both dHb have right identity appear more reactive to alarm substance. The results implicate an asymmetric dHb-vIPN neural circuit in the processing of repulsive olfactory cues and in modulating the resultant behavioral response.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1-5.Behavioral analyses were performed using custom written scripts in MATLAB and uploaded as Source Code Files.

Article and author information

Author details

  1. Jung-Hwa Choi

    Geisel School of Medicine at Dartmouth, Department of Molecular and Systems Biology, Dartmouth College, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Erik R Duboue

    Harriet Wilkes Honors College, Florida Atlantic University, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3303-5149
  3. Michelle Macurak

    Department of Embryology, Carnegie Institution for Science, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-Michel Chanchu

    Department of Embryology, Carnegie Institution for Science, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Marnie E Halpern

    Geisel School of Medicine at Dartmouth, Department of Molecular and Systems Biology, Dartmouth College, Hanover, United States
    For correspondence
    Marnie.E.Halpern@Dartmouth.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3634-9058

Funding

National Institutes of Health (R01HD078220)

  • Marnie E Halpern

National Institutes of Health (R37HD091280)

  • Marnie E Halpern

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All zebrafish protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of the Carnegie Institution for Science [Protocol #122] or Dartmouth College [Protocol #00002253(m3a)].

Copyright

© 2021, Choi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,010
    views
  • 259
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jung-Hwa Choi
  2. Erik R Duboue
  3. Michelle Macurak
  4. Jean-Michel Chanchu
  5. Marnie E Halpern
(2021)
Specialized neurons in the right habenula mediate response to aversive olfactory cues
eLife 10:e72345.
https://doi.org/10.7554/eLife.72345

Share this article

https://doi.org/10.7554/eLife.72345

Further reading

    1. Neuroscience
    Paul I Jaffe, Gustavo X Santiago-Reyes ... Russell A Poldrack
    Research Article

    Evidence accumulation models (EAMs) are the dominant framework for modeling response time (RT) data from speeded decision-making tasks. While providing a good quantitative description of RT data in terms of abstract perceptual representations, EAMs do not explain how the visual system extracts these representations in the first place. To address this limitation, we introduce the visual accumulator model (VAM), in which convolutional neural network models of visual processing and traditional EAMs are jointly fitted to trial-level RTs and raw (pixel-space) visual stimuli from individual subjects in a unified Bayesian framework. Models fitted to large-scale cognitive training data from a stylized flanker task captured individual differences in congruency effects, RTs, and accuracy. We find evidence that the selection of task-relevant information occurs through the orthogonalization of relevant and irrelevant representations, demonstrating how our framework can be used to relate visual representations to behavioral outputs. Together, our work provides a probabilistic framework for both constraining neural network models of vision with behavioral data and studying how the visual system extracts representations that guide decisions.

    1. Neuroscience
    Hans Martin Kjer, Mariam Andersson ... Tim B Dyrby
    Research Article

    We used diffusion MRI and x-ray synchrotron imaging on monkey and mice brains to examine the organisation of fibre pathways in white matter across anatomical scales. We compared the structure in the corpus callosum and crossing fibre regions and investigated the differences in cuprizone-induced demyelination in mouse brains versus healthy controls. Our findings revealed common principles of fibre organisation that apply despite the varying patterns observed across species; small axonal fasciculi and major bundles formed laminar structures with varying angles, according to the characteristics of major pathways. Fasciculi exhibited non-straight paths around obstacles like blood vessels, comparable across the samples of varying fibre complexity and demyelination. Quantifications of fibre orientation distributions were consistent across anatomical length scales and modalities, whereas tissue anisotropy had a more complex relationship, both dependent on the field-of-view. Our study emphasises the need to balance field-of-view and voxel size when characterising white matter features across length scales.