A Tad-like apparatus is required for contact-dependent prey killing in predatory social bacteria
Abstract
Myxococcus xanthus, a soil bacterium, predates collectively using motility to invade prey colonies. Prey lysis is mostly thought to rely on secreted factors, cocktails of antibiotics and enzymes, and direct contac with Myxococcus cells. In this study, we show that on surfaces the coupling of A-motility and contact-dependent killing is the central predatory mechanism driving effective prey colony invasion and consumption. At the molecular level, contact-dependent killing involves a newly discovered type IV filament-like machinery (Kil) that both promotes motility arrest and prey cell plasmolysis. In this process, Kil proteins assemble at the predator-prey contact site, suggesting that they allow tight contact with prey cells for their intoxication. Kil-like systems form a new class of Tad-like machineries in predatory bacteria, suggesting a conserved function in predator-prey interactions. This study further reveals a novel cell-cell interaction function for bacterial pili-like assemblages.
Data availability
Source Data files have been provided for :- Figure 2-source data 1: E. coli loss of fluorescence during contact-dependent lysis (Figure 2c).- Figure 2-figure supplement 5-source data 1: Contact dependent-lysis and VipA-GFP dynamics.- Figure 2-figure supplement 7-source data 1: CPRG assay.- Figure 3-source data 1: CPRG assay (Figure 3b).- Figure 3-source data 2: counting percentage of contacts with a prey leading to motility pauses and prey cell lysis (Figure 3c, 3d).- Figure 3-figure supplement 3-source data 1: CPRG assay.- Figure 4-source data 1: counting percentage of contacts with a prey leading to NG-KilD foci formation and counting percentage of NG-KilD foci associated with motility pause and prey cell lysis (Figure 4e, 4f, 4g).- Figure 4-figure supplement 1-source data 1: CPRG assay.- Figure 4-figure supplement 2-source data 1: CPRG assay.- Figure 4-figure supplement 3-source data 1: Lysis time.- Figure 4-figure supplement 4-source data 1: Western Blot.- Figure 5-source data 1: Flow cytometry (Figure 5c, 5d).- Figure 5-source data 2: M. xanthus growth during prey colony invasion (Figure 5e).- Figure 5-source data 3: Increase in M. xanthus cell length during predation (Figure 5f).- Figure 5-figure supplement 2-source data 1: Growth curves.- Figure 6-source data 1: Prey CFU counts during predation (Figure 6b,c,d,e,f).- Figure 7-source data 1: Supermatrix alignment.- Figure 3-figure supplement 2: RNA-seq Data from Livingstone PG et al. (2018) Microb Genom. PMID:29345219, Supplementary File 1 available online: https://www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.000152#supplementary_data).
Article and author information
Author details
Funding
Centre National de la Recherche Scientifique (2019 CNRS 80-Prime)
- Tâm Mignot
Ministère de l'Éducation et de l'Enseignement supérieur (MENRT thesis grant)
- Sofiene Seef
Ministère de l'Éducation et de l'Enseignement supérieur (MENRT thesis grant)
- Paul de Boissier
Ministère de l'Éducation et de l'Enseignement supérieur (MENRT thesis grant)
- Donovan Robert
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Seef et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,171
- views
-
- 500
- downloads
-
- 60
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Microbiology and Infectious Disease
Zika virus (ZIKV) infection causes significant human disease that, with no approved treatment or vaccine, constitutes a major public health concern. Its life cycle entirely relies on the cytoplasmic fate of the viral RNA genome (vRNA) through a fine-tuned equilibrium between vRNA translation, replication, and packaging into new virions, all within virus-induced replication organelles (vROs). In this study, with an RNA interference (RNAi) mini-screening and subsequent functional characterization, we have identified insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) as a new host dependency factor that regulates vRNA synthesis. In infected cells, IGF2BP2 associates with viral NS5 polymerase and redistributes to the perinuclear viral replication compartment. Combined fluorescence in situ hybridization-based confocal imaging, in vitro binding assays, and immunoprecipitation coupled to RT-qPCR showed that IGF2BP2 directly interacts with ZIKV vRNA 3’ nontranslated region. Using ZIKV sub-genomic replicons and a replication-independent vRO induction system, we demonstrated that IGF2BP2 knockdown impairs de novo vRO biogenesis and, consistently, vRNA synthesis. Finally, the analysis of immunopurified IGF2BP2 complex using quantitative mass spectrometry and RT-qPCR revealed that ZIKV infection alters the protein and RNA interactomes of IGF2BP2. Altogether, our data support that ZIKV hijacks and remodels the IGF2BP2 ribonucleoprotein complex to regulate vRO biogenesis and vRNA neosynthesis.
-
- Microbiology and Infectious Disease
Bacillus velezensis is a species of Bacillus that has been widely investigated because of its broad-spectrum antimicrobial activity. However, most studies on B. velezensis have focused on the biocontrol of plant diseases, with few reports on antagonizing Salmonella Typhimurium infections. In this investigation, it was discovered that B. velezensis HBXN2020, which was isolated from healthy black pigs, possessed strong anti-stress and broad-spectrum antibacterial activity. Importantly, B. velezensis HBXN2020 did not cause any adverse side effects in mice when administered at various doses (1×107, 1×108, and 1×109 CFU) for 14 days. Supplementing B. velezensis HBXN2020 spores, either as a curative or preventive measure, dramatically reduced the levels of S. Typhimurium ATCC14028 in the mice’s feces, ileum, cecum, and colon, as well as the disease activity index (DAI), in a model of infection caused by this pathogen in mice. Additionally, supplementing B. velezensis HBXN2020 spores significantly regulated cytokine levels (Tnfa, Il1b, Il6, and Il10) and maintained the expression of tight junction proteins and mucin protein. Most importantly, adding B. velezensis HBXN2020 spores to the colonic microbiota improved its stability and increased the amount of beneficial bacteria (Lactobacillus and Akkermansia). All together, B. velezensis HBXN2020 can improve intestinal microbiota stability and barrier integrity and reduce inflammation to help treat infection by S. Typhimurium.