1. Microbiology and Infectious Disease
Download icon

The Lyme Disease agent co-opts adiponectin receptor-mediated signaling in its arthropod vector

  1. Xiaotian Tang  Is a corresponding author
  2. Yongguo Cao
  3. Gunjan Arora
  4. Jesse Hwang
  5. Andaleeb Sajid
  6. Courtney L Brown
  7. Sameet Mehta
  8. Alejandro Marín-López
  9. Yu-Min Chuang
  10. Ming-Jie Wu
  11. Hongwei Ma
  12. Utpal Pal
  13. Sukanya Narasimhan
  14. Erol Fikrig  Is a corresponding author
  1. Yale University, United States
  2. Yale University School of Medicine, United States
  3. University of Maryland, United States
Research Article
  • Cited 0
  • Views 298
  • Annotations
Cite this article as: eLife 2021;10:e72568 doi: 10.7554/eLife.72568

Abstract

Adiponectin-mediated pathways contribute to mammalian homeostasis; however, little is known about adiponectin and adiponectin receptor signaling in arthropods. In this study, we demonstrate that Ixodes scapularis ticks have an adiponectin receptor-like protein (ISARL) but lack adiponectin - suggesting activation by alternative pathways. ISARL expression is significantly upregulated in the tick gut after Borrelia burgdorferi infection suggesting that ISARL-signaling may be co-opted by the Lyme disease agent. Consistent with this, RNA interference (RNAi)-mediated silencing of ISARL significantly reduced the B. burgdorferi burden in the tick. RNA-seq-based transcriptomics and RNAi assays demonstrate that ISARL-mediated phospholipid metabolism by phosphatidylserine synthase I is associated with B. burgdorferi survival. Furthermore, the tick complement C1q-like protein 3 interacts with ISARL, and B. burgdorferi facilitates this process. This study identifies a new tick metabolic pathway that is connected to the life cycle of the Lyme disease spirochete.

Data availability

The RNA-seq data are available in the Gene Expression Omnibus (GEO) repository at the National Center for Biotechnology Information under the accession number: GSE169293.

The following data sets were generated

Article and author information

Author details

  1. Xiaotian Tang

    Yale University, New Haven, United States
    For correspondence
    xiaotian.tang@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0171-9354
  2. Yongguo Cao

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9533-7516
  3. Gunjan Arora

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jesse Hwang

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andaleeb Sajid

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Courtney L Brown

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7423-3331
  7. Sameet Mehta

    Yale Center for Genome Analysis Bioinformatics, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alejandro Marín-López

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Yu-Min Chuang

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2241-5541
  10. Ming-Jie Wu

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Hongwei Ma

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Utpal Pal

    Department of Veterinary Medicine, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Sukanya Narasimhan

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Erol Fikrig

    Yale University, New Haven, United States
    For correspondence
    erol.fikrig@yale.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (AI126033)

  • Erol Fikrig

National Institutes of Health (AI138949)

  • Erol Fikrig

Steven and Alexandra Cohen Foundation

  • Erol Fikrig

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal care and housing were performed according to the Guide for the Care and Use of laboratory Animals of National Institutes of Health, USA. All protocols in this study were approved by the Yale University Institutional Animal Care and Use Committee (YUIACUC) (approval number 2018-07941).

Reviewing Editor

  1. Shaeri Mukherjee, University of California, San Francisco, United States

Publication history

  1. Received: July 28, 2021
  2. Preprint posted: September 15, 2021 (view preprint)
  3. Accepted: November 4, 2021
  4. Accepted Manuscript published: November 16, 2021 (version 1)
  5. Version of Record published: December 2, 2021 (version 2)

Copyright

© 2021, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 298
    Page views
  • 57
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    Pedro Escoll et al.
    Research Article Updated

    Legionella pneumophila, the causative agent of Legionnaires’ disease, a severe pneumonia, injects via a type 4 secretion system (T4SS) more than 300 proteins into macrophages, its main host cell in humans. Certain of these proteins are implicated in reprogramming the metabolism of infected cells by reducing mitochondrial oxidative phosphorylation (OXPHOS) early after infection. Here. we show that despite reduced OXPHOS, the mitochondrial membrane potential (Δψm) is maintained during infection of primary human monocyte-derived macrophages (hMDMs). We reveal that L. pneumophila reverses the ATP-synthase activity of the mitochondrial FOF1-ATPase to ATP-hydrolase activity in a T4SS-dependent manner, which leads to a conservation of the Δψm, preserves mitochondrial polarization, and prevents macrophage cell death. Analyses of T4SS effectors known to target mitochondrial functions revealed that LpSpl is partially involved in conserving the Δψm, but not LncP and MitF. The inhibition of the L. pneumophila-induced ‘reverse mode’ of the FOF1-ATPase collapsed the Δψm and caused cell death in infected cells. Single-cell analyses suggested that bacterial replication occurs preferentially in hMDMs that conserved the Δψm and showed delayed cell death. This direct manipulation of the mode of activity of the FOF1-ATPase is a newly identified feature of L. pneumophila allowing to delay host cell death and thereby to preserve the bacterial replication niche during infection.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Chansavath Phetsouphanh et al.
    Short Report

    Human MAIT cells sit at the interface between innate and adaptive immunity, are polyfunctional and are capable of killing pathogen infected cells via recognition of the Class IB molecule MR1. MAIT cells have recently been shown to possess an antiviral protective role in vivo and we therefore sought to explore this in relation to HIV-1 infection. There was marked activation of MAIT cells in vivo in HIV-1-infected individuals, which decreased following ART. Stimulation of THP1 monocytes with R5 tropic HIVBAL potently activated MAIT cells in vitro. This activation was dependent on IL-12 and IL-18 but was independent of the TCR. Upon activation, MAIT cells were able to upregulate granzyme B, IFNγ and HIV-1 restriction factors CCL3, 4, and 5. Restriction factors produced by MAIT cells inhibited HIV-1 infection of primary PBMCs and immortalized target cells in vitro. These data reveal MAIT cells to be an additional T cell population responding to HIV-1, with a potentially important role in controlling viral replication at mucosal sites.