Microtubule rescue at midzone edges promotes overlap stability and prevents spindle collapse during anaphase B

  1. Manuel Lera-Ramirez  Is a corresponding author
  2. François J Nédélec  Is a corresponding author
  3. Phong T Tran  Is a corresponding author
  1. Institut Curie, France
  2. Cambridge University, United Kingdom

Abstract

During anaphase B, molecular motors slide interpolar microtubules to elongate the mitotic spindle, contributing to the separation of chromosomes. However, sliding of antiparallel microtubules reduces their overlap, which may lead to spindle breakage, unless microtubules grow to compensate sliding. How sliding and growth are coordinated is still poorly understood. In this study, we have used the fission yeast S. pombe to measure microtubule dynamics during anaphase B. We report that the coordination of microtubule growth and sliding relies on promoting rescues at the midzone edges. This makes microtubules stable from pole to midzone, while their distal parts including the plus ends alternate between assembly and disassembly. Consequently, the midzone keeps a constant length throughout anaphase, enabling sustained sliding without the need for a precise regulation of microtubule growth speed. Additionally, we found that in S. pombe, which undergoes closed mitosis, microtubule growth speed decreases when the nuclear membrane wraps around the spindle midzone.

Data availability

Source code to reproduce and analyse the simulations is deposited in github at https://github.com/manulera/simulationsLeraRamirez2021Source code to annotate and analyse kymographs is deposited in github athttps://github.com/manulera/KymoAnalyzerSource code to find spindles in microscopy images is deposited in github at https://github.com/manulera/ImageAnalysisFunctions/tree/master/detection_functions/spindleWe have uploaded the source data for all figures as comma separated values files.

The following data sets were generated

Article and author information

Author details

  1. Manuel Lera-Ramirez

    CNRS, UMR 144, Institut Curie, Paris, France
    For correspondence
    manuel.lera-ramirez@curie.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8666-9746
  2. François J Nédélec

    Sainsbury Laboratory, Cambridge University, Cambridge, United Kingdom
    For correspondence
    francois.nedelec@slcu.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  3. Phong T Tran

    CNRS, UMR 144, Institut Curie, Paris, France
    For correspondence
    phong.tran@curie.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2410-2277

Funding

H2020 Marie Skłodowska-Curie Actions (675737)

  • Manuel Lera-Ramirez

Gatsby Charitable Foundation

  • François J Nédélec

Institut National Du Cancer

  • Phong T Tran

Fondation ARC pour la Recherche sur le Cancer

  • Phong T Tran

Ligue Contre le Cancer

  • Phong T Tran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Silke Hauf, Virginia Tech, United States

Publication history

  1. Received: July 29, 2021
  2. Preprint posted: August 6, 2021 (view preprint)
  3. Accepted: March 15, 2022
  4. Accepted Manuscript published: March 16, 2022 (version 1)
  5. Version of Record published: April 19, 2022 (version 2)

Copyright

© 2022, Lera-Ramirez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 548
    Page views
  • 146
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Manuel Lera-Ramirez
  2. François J Nédélec
  3. Phong T Tran
(2022)
Microtubule rescue at midzone edges promotes overlap stability and prevents spindle collapse during anaphase B
eLife 11:e72630.
https://doi.org/10.7554/eLife.72630

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Sumedha Dahal, Humaira Siddiqua ... Sathees C Raghavan
    Research Article Updated

    Having its genome makes the mitochondrion a unique and semiautonomous organelle within cells. Mammalian mitochondrial DNA (mtDNA) is a double-stranded closed circular molecule of about 16 kb coding for 37 genes. Mutations, including deletions in the mitochondrial genome, can culminate in different human diseases. Mapping the deletion junctions suggests that the breakpoints are generally seen at hotspots. ‘9 bp deletion’ (8271–8281), seen in the intergenic region of cytochrome c oxidase II/tRNALys, is the most common mitochondrial deletion. While it is associated with several diseases like myopathy, dystonia, and hepatocellular carcinoma, it has also been used as an evolutionary marker. However, the mechanism responsible for its fragility is unclear. In the current study, we show that Endonuclease G, a mitochondrial nuclease responsible for nonspecific cleavage of nuclear DNA during apoptosis, can induce breaks at sequences associated with ‘9 bp deletion’ when it is present on a plasmid or in the mitochondrial genome. Through a series of in vitro and intracellular studies, we show that Endonuclease G binds to G-quadruplex structures formed at the hotspot and induces DNA breaks. Therefore, we uncover a new role for Endonuclease G in generating mtDNA deletions, which depends on the formation of G4 DNA within the mitochondrial genome. In summary, we identify a novel property of Endonuclease G, besides its role in apoptosis and the recently described ‘elimination of paternal mitochondria during fertilisation.

    1. Cell Biology
    Amanda E Brandon, Lewin Small ... Gregory J Cooney
    Research Article Updated

    Obesity is generally associated with insulin resistance in liver and muscle and increased risk of developing type 2 diabetes, however there is a population of obese people that remain insulin sensitive. Similarly, recent work suggests that mice fed high carbohydrate diets can become obese without apparent glucose intolerance. To investigate this phenomenon further, we fed mice either a high fat (Hi-F) or high starch (Hi-ST) diet and measured adiposity, glucose tolerance, insulin sensitivity, and tissue lipids compared to control mice fed a standard laboratory chow. Both Hi-ST and Hi-F mice accumulated a similar amount of fat and tissue triglyceride compared to chow-fed mice. However, while Hi-F diet mice developed glucose intolerance as well as liver and muscle insulin resistance (assessed via euglycaemic/hyperinsulinaemic clamp), obese Hi-ST mice maintained glucose tolerance and insulin action similar to lean, chow-fed controls. This preservation of insulin action despite obesity in Hi-ST mice was associated with differences in de novo lipogenesis and levels of C22:0 ceramide in liver and C18:0 ceramide in muscle. This indicates that dietary manipulation can influence insulin action independently of the level of adiposity and that the presence of specific ceramide species correlates with these differences.