Social selectivity and social motivation in voles

  1. Annaliese K Beery  Is a corresponding author
  2. Sarah A Lopez
  3. Katrina L Blandino
  4. Nicole S Lee
  5. Natalie S Bourdon
  1. UC Berkeley, United States
  2. Smith College, United States
  3. University of Massachusetts Amherst, United States

Abstract

Selective relationships are fundamental to humans and many other animals, but relationships between mates, family members, or peers may be mediated differently. We examined connections between social reward and social selectivity, aggression, and oxytocin receptor signaling pathways in rodents that naturally form enduring, selective relationships with mates and peers (monogamous prairie voles) or peers (group-living meadow voles). Female prairie and meadow voles worked harder to access familiar vs. unfamiliar individuals, regardless of sex, and huddled extensively with familiar subjects. Male prairie voles displayed strongly selective huddling preferences for familiar animals, but only worked harder to repeatedly access females vs. males, with no difference in effort by familiarity. This reveals a striking sex difference in pathways underlying social monogamy, and demonstrates a fundamental disconnect between motivation and social selectivity in males-a distinction not detected by the partner preference test. Meadow voles exhibited social preferences but low social motivation, consistent with tolerance rather than reward supporting social groups in this species. Natural variation in oxytocin receptor binding predicted individual variation in prosocial and aggressive behaviors. These results provide a basis for understanding species, sex, and individual differences in the mechanisms underlying the role of social reward in social preference.

Data availability

Data have been deposited in a project folder on the Open Science Framework website, available at: https://osf.io/g2jf7/

Article and author information

Author details

  1. Annaliese K Beery

    UC Berkeley, Berkeley, United States
    For correspondence
    abeery@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1249-9182
  2. Sarah A Lopez

    Smith College, Northampton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Katrina L Blandino

    Smith College, Northampton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicole S Lee

    University of Massachusetts Amherst, Amherst, MA, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Natalie S Bourdon

    Smith College, Northampton, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R15MH113085)

  • Annaliese K Beery

The funders had no role in study design, data collection or interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was carried out in accordance with the recommendations of the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animals were handed according to a research protocol (ASAF 272) approved by the Institutional Care and use committee of Smith College.

Copyright

© 2021, Beery et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,965
    views
  • 316
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Annaliese K Beery
  2. Sarah A Lopez
  3. Katrina L Blandino
  4. Nicole S Lee
  5. Natalie S Bourdon
(2021)
Social selectivity and social motivation in voles
eLife 10:e72684.
https://doi.org/10.7554/eLife.72684

Share this article

https://doi.org/10.7554/eLife.72684

Further reading

    1. Developmental Biology
    2. Neuroscience
    Mahima Bose, Ishita Talwar ... Shubha Tole
    Research Article

    In the developing vertebrate central nervous system, neurons and glia typically arise sequentially from common progenitors. Here, we report that the transcription factor Forkhead Box G1 (Foxg1) regulates gliogenesis in the mouse neocortex via distinct cell-autonomous roles in progenitors and postmitotic neurons that regulate different aspects of the gliogenic FGF signalling pathway. We demonstrate that loss of Foxg1 in cortical progenitors at neurogenic stages causes premature astrogliogenesis. We identify a novel FOXG1 target, the pro-gliogenic FGF pathway component Fgfr3, which is suppressed by FOXG1 cell-autonomously to maintain neurogenesis. Furthermore, FOXG1 can also suppress premature astrogliogenesis triggered by the augmentation of FGF signalling. We identify a second novel function of FOXG1 in regulating the expression of gliogenic cues in newborn neocortical upper-layer neurons. Loss of FOXG1 in postmitotic neurons non-autonomously enhances gliogenesis in the progenitors via FGF signalling. These results fit well with the model that newborn neurons secrete cues that trigger progenitors to produce the next wave of cell types, astrocytes. If FGF signalling is attenuated in Foxg1 null progenitors, they progress to oligodendrocyte production. Therefore, loss of FOXG1 transitions the progenitor to a gliogenic state, producing either astrocytes or oligodendrocytes depending on FGF signalling levels. Our results uncover how FOXG1 integrates extrinsic signalling via the FGF pathway to regulate the sequential generation of neurons, astrocytes, and oligodendrocytes in the cerebral cortex.

    1. Neuroscience
    Baher A Ibrahim, Yoshitaka Shinagawa ... Daniel A Llano
    Research Article

    To navigate real-world listening conditions, the auditory system relies on the integration of multiple sources of information. However, to avoid inappropriate cross-talk between inputs, highly connected neural systems need to strike a balance between integration and segregation. Here, we develop a novel approach to examine how repeated neurochemical modules in the mouse inferior colliculus lateral cortex (LC) allow controlled integration of its multimodal inputs. The LC had been impossible to study via imaging because it is buried in a sulcus. Therefore, we coupled two-photon microscopy with the use of a microprism to reveal the first-ever sagittal views of the LC to examine neuronal responses with respect to its neurochemical motifs under anesthetized and awake conditions. This approach revealed marked differences in the acoustic response properties of LC and neighboring non-lemniscal portions of the inferior colliculus. In addition, we observed that the module and matrix cellular motifs of the LC displayed distinct somatosensory and auditory responses. Specifically, neurons in modules demonstrated primarily offset responses to acoustic stimuli with enhancement in responses to bimodal stimuli, whereas matrix neurons showed onset response to acoustic stimuli and suppressed responses to bimodal stimulation. Thus, this new approach revealed that the repeated structural motifs of the LC permit functional integration of multimodal inputs while retaining distinct response properties.