Early evolution of beetles regulated by the end-Permian deforestation

  1. Xianye Zhao
  2. Yilun Yu
  3. Matthew E Clapham
  4. Evgeny Yan
  5. Jun Chen
  6. Edmund A Jarzembowski
  7. Xiangdong Zhao
  8. Bo Wang  Is a corresponding author
  1. Nanjing Institute of Geology and Palaeontology, China
  2. Institute of Vertebrate Paleontology and Paleoanthropology, China
  3. Department of Earth and Planetary Sciences, University of California, Santa Cruz, United States
  4. Palaeontological Institute, Russian Academy of Sciences, Russian Federation
  5. Institute of Geology and Paleontology, Linyi University, China
  6. Chinese Academy of Sciences, China

Abstract

The end-Permian mass extinction (EPME) led to a severe terrestrial ecosystem collapse. However, the ecological response of insects—the most diverse group of organisms on Earth—to the EPME remains poorly understood. Here, we analyse beetle evolutionary history based on taxonomic diversity, morphological disparity, phylogeny, and ecological shifts from the Early Permian to Middle Triassic, using a comprehensive new data set. Permian beetles were dominated by xylophagous stem groups with high diversity and disparity, which probably played an underappreciated role in the Permian carbon cycle. Our suite of analyses shows that Permian xylophagous beetles suffered a severe extinction during the EPME largely due to the collapse of forest ecosystems, resulting in an Early Triassic gap of xylophagous beetles. New xylophagous beetles appeared widely in the early Middle Triassic, which is consistent with the restoration of forest ecosystems. Our results highlight the ecological significance of insects in deep-time terrestrial ecosystems.

Data availability

All source data are available at https://doi.org/10.5061/dryad.7m0cfxpvd. In addition, the source data files (Supplementary Data 1-4) have been provided for figures 2-4 and appendix figures 1-10.

The following data sets were generated

Article and author information

Author details

  1. Xianye Zhao

    Nanjing Institute of Geology and Palaeontology, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yilun Yu

    Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew E Clapham

    Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Evgeny Yan

    Palaeontological Institute, Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  5. Jun Chen

    Institute of Geology and Paleontology, Linyi University, Linyi, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Edmund A Jarzembowski

    State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjiing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiangdong Zhao

    Nanjing Institute of Geology and Palaeontology, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Bo Wang

    Nanjing Institute of Geology and Palaeontology, Nanjing, China
    For correspondence
    bowang@nigpas.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8001-9937

Funding

Chinese Academy of Sciences (XDA19050101,XDB26000000)

  • Bo Wang

National Natural Science Foundation of China (42125201,41688103)

  • Bo Wang

Natural Scientific Founation of Shandong Province (ZR2020YQ27)

  • Jun Chen

Russian Science Foundation (21-14-00284)

  • Evgeny Yan

Chinese Academy of Sciences (2020VCA0020)

  • Edmund A Jarzembowski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. George H Perry, Pennsylvania State University, United States

Version history

  1. Received: August 1, 2021
  2. Preprint posted: October 13, 2021 (view preprint)
  3. Accepted: November 3, 2021
  4. Accepted Manuscript published: November 8, 2021 (version 1)
  5. Version of Record published: November 11, 2021 (version 2)

Copyright

© 2021, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,797
    views
  • 286
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xianye Zhao
  2. Yilun Yu
  3. Matthew E Clapham
  4. Evgeny Yan
  5. Jun Chen
  6. Edmund A Jarzembowski
  7. Xiangdong Zhao
  8. Bo Wang
(2021)
Early evolution of beetles regulated by the end-Permian deforestation
eLife 10:e72692.
https://doi.org/10.7554/eLife.72692

Share this article

https://doi.org/10.7554/eLife.72692

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Evolutionary Biology
    Robert Horvath, Nikolaos Minadakis ... Anne C Roulin
    Research Article

    Understanding how plants adapt to changing environments and the potential contribution of transposable elements (TEs) to this process is a key question in evolutionary genomics. While TEs have recently been put forward as active players in the context of adaptation, few studies have thoroughly investigated their precise role in plant evolution. Here, we used the wild Mediterranean grass Brachypodium distachyon as a model species to identify and quantify the forces acting on TEs during the adaptation of this species to various conditions, across its entire geographic range. Using sequencing data from more than 320 natural B. distachyon accessions and a suite of population genomics approaches, we reveal that putatively adaptive TE polymorphisms are rare in wild B. distachyon populations. After accounting for changes in past TE activity, we show that only a small proportion of TE polymorphisms evolved neutrally (<10%), while the vast majority of them are under moderate purifying selection regardless of their distance to genes. TE polymorphisms should not be ignored when conducting evolutionary studies, as they can be linked to adaptation. However, our study clearly shows that while they have a large potential to cause phenotypic variation in B. distachyon, they are not favored during evolution and adaptation over other types of mutations (such as point mutations) in this species.