Early evolution of beetles regulated by the end-Permian deforestation

  1. Xianye Zhao
  2. Yilun Yu
  3. Matthew E Clapham
  4. Evgeny Yan
  5. Jun Chen
  6. Edmund A Jarzembowski
  7. Xiangdong Zhao
  8. Bo Wang  Is a corresponding author
  1. Nanjing Institute of Geology and Palaeontology, China
  2. Institute of Vertebrate Paleontology and Paleoanthropology, China
  3. Department of Earth and Planetary Sciences, University of California, Santa Cruz, United States
  4. Palaeontological Institute, Russian Academy of Sciences, Russian Federation
  5. Institute of Geology and Paleontology, Linyi University, China
  6. Chinese Academy of Sciences, China

Abstract

The end-Permian mass extinction (EPME) led to a severe terrestrial ecosystem collapse. However, the ecological response of insects—the most diverse group of organisms on Earth—to the EPME remains poorly understood. Here, we analyse beetle evolutionary history based on taxonomic diversity, morphological disparity, phylogeny, and ecological shifts from the Early Permian to Middle Triassic, using a comprehensive new data set. Permian beetles were dominated by xylophagous stem groups with high diversity and disparity, which probably played an underappreciated role in the Permian carbon cycle. Our suite of analyses shows that Permian xylophagous beetles suffered a severe extinction during the EPME largely due to the collapse of forest ecosystems, resulting in an Early Triassic gap of xylophagous beetles. New xylophagous beetles appeared widely in the early Middle Triassic, which is consistent with the restoration of forest ecosystems. Our results highlight the ecological significance of insects in deep-time terrestrial ecosystems.

Data availability

All source data are available at https://doi.org/10.5061/dryad.7m0cfxpvd. In addition, the source data files (Supplementary Data 1-4) have been provided for figures 2-4 and appendix figures 1-10.

The following data sets were generated

Article and author information

Author details

  1. Xianye Zhao

    Nanjing Institute of Geology and Palaeontology, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yilun Yu

    Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew E Clapham

    Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Evgeny Yan

    Palaeontological Institute, Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  5. Jun Chen

    Institute of Geology and Paleontology, Linyi University, Linyi, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Edmund A Jarzembowski

    State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjiing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiangdong Zhao

    Nanjing Institute of Geology and Palaeontology, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Bo Wang

    Nanjing Institute of Geology and Palaeontology, Nanjing, China
    For correspondence
    bowang@nigpas.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8001-9937

Funding

Chinese Academy of Sciences (XDA19050101,XDB26000000)

  • Bo Wang

National Natural Science Foundation of China (42125201,41688103)

  • Bo Wang

Natural Scientific Founation of Shandong Province (ZR2020YQ27)

  • Jun Chen

Russian Science Foundation (21-14-00284)

  • Evgeny Yan

Chinese Academy of Sciences (2020VCA0020)

  • Edmund A Jarzembowski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. George H Perry, Pennsylvania State University, United States

Publication history

  1. Received: August 1, 2021
  2. Preprint posted: October 13, 2021 (view preprint)
  3. Accepted: November 3, 2021
  4. Accepted Manuscript published: November 8, 2021 (version 1)
  5. Version of Record published: November 11, 2021 (version 2)

Copyright

© 2021, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 976
    Page views
  • 143
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xianye Zhao
  2. Yilun Yu
  3. Matthew E Clapham
  4. Evgeny Yan
  5. Jun Chen
  6. Edmund A Jarzembowski
  7. Xiangdong Zhao
  8. Bo Wang
(2021)
Early evolution of beetles regulated by the end-Permian deforestation
eLife 10:e72692.
https://doi.org/10.7554/eLife.72692

Further reading

    1. Ecology
    2. Evolutionary Biology
    Longhui Zhao et al.
    Research Article Updated

    Many animals rely on complex signals that target multiple senses to attract mates and repel rivals. These multimodal displays can however also attract unintended receivers, which can be an important driver of signal complexity. Despite being taxonomically widespread, we often lack insight into how multimodal signals evolve from unimodal signals and in particular what roles unintended eavesdroppers play. Here, we assess whether the physical movements of parasite defense behavior increase the complexity and attractiveness of an acoustic sexual signal in the little torrent frog (Amolops torrentis). Calling males of this species often display limb movements in order to defend against blood-sucking parasites such as frog-biting midges that eavesdrop on their acoustic signal. Through mate choice tests we show that some of these midge-evoked movements influence female preference for acoustic signals. Our data suggest that midge-induced movements may be incorporated into a sexual display, targeting both hearing and vision in the intended receiver. Females may play an important role in incorporating these multiple components because they prefer signals which combine multiple modalities. Our results thus help to understand the relationship between natural and sexual selection pressure operating on signalers and how in turn this may influence multimodal signal evolution.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Louisa Gonzalez Somermeyer et al.
    Research Article Updated

    Studies of protein fitness landscapes reveal biophysical constraints guiding protein evolution and empower prediction of functional proteins. However, generalisation of these findings is limited due to scarceness of systematic data on fitness landscapes of proteins with a defined evolutionary relationship. We characterized the fitness peaks of four orthologous fluorescent proteins with a broad range of sequence divergence. While two of the four studied fitness peaks were sharp, the other two were considerably flatter, being almost entirely free of epistatic interactions. Mutationally robust proteins, characterized by a flat fitness peak, were not optimal templates for machine-learning-driven protein design – instead, predictions were more accurate for fragile proteins with epistatic landscapes. Our work paves insights for practical application of fitness landscape heterogeneity in protein engineering.