Working memory capacity of crows and monkeys arises from similar neuronal computations

  1. Lukas Alexander Hahn  Is a corresponding author
  2. Dmitry Balakhonov  Is a corresponding author
  3. Erica Fongaro
  4. Andreas Nieder
  5. Jonas Rose
  1. Ruhr University Bochum, Germany
  2. University of Tübingen, Germany

Abstract

Complex cognition relies on flexible working memory, which is severely limited in its capacity. The neuronal computations underlying these capacity limits have been extensively studied in humans and in monkeys, resulting in competing theoretical models. We probed the working memory capacity of crows (Corvus corone) in a change detection task, developed for monkeys (Macaca mulatta), while we performed extracellular recordings of the prefrontal-like area nidopallium caudolaterale. We found that neuronal encoding and maintenance of information were affected by item load, in a way that is virtually identical to results obtained from monkey prefrontal cortex. Contemporary neurophysiological models of working memory employ divisive normalization as an important mechanism that may result in the capacity limitation. As these models are usually conceptualized and tested in an exclusively mammalian context, it remains unclear if they fully capture a general concept of working memory or if they are restricted to the mammalian neocortex. Here we report that carrion crows and macaque monkeys share divisive normalization as a neuronal computation that is in line with mammalian models. This indicates that computational models of working memory developed in the mammalian cortex can also apply to non-cortical associative brain regions of birds.

Data availability

All details of statistics reported in the manuscript is provided as a supporting file. Source data files of all figures will be made publicly available via dryad.

The following data sets were generated

Article and author information

Author details

  1. Lukas Alexander Hahn

    Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
    For correspondence
    lukas.hahn@ruhr-uni-bochum.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0491-7954
  2. Dmitry Balakhonov

    Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
    For correspondence
    balakhonov.ds@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  3. Erica Fongaro

    Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Andreas Nieder

    Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6381-0375
  5. Jonas Rose

    Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1745-727X

Funding

Volkswagen Foundation (Freigeist Fellowship 93299)

  • Jonas Rose

Deutsche Forschungsgemeinschaft (Project B13 of the collaborative research center 874 (122679504))

  • Jonas Rose

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures and housing conditions were carried out in accordance with the National Institutes of Health Guide for Care and Use of Laboratory Animals and were authorized by the national authority (LANUV protocol no. 84-02.04.2017.A001).

Reviewing Editor

  1. Erin L Rich, Icahn School of Medicine at Mount Sinai, United States

Publication history

  1. Received: August 4, 2021
  2. Preprint posted: August 19, 2021 (view preprint)
  3. Accepted: November 9, 2021
  4. Accepted Manuscript published: December 3, 2021 (version 1)
  5. Version of Record published: December 9, 2021 (version 2)

Copyright

© 2021, Hahn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,483
    Page views
  • 224
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lukas Alexander Hahn
  2. Dmitry Balakhonov
  3. Erica Fongaro
  4. Andreas Nieder
  5. Jonas Rose
(2021)
Working memory capacity of crows and monkeys arises from similar neuronal computations
eLife 10:e72783.
https://doi.org/10.7554/eLife.72783

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Sabrina A Jones, Jacob H Barfield ... Woodrow L Shew
    Research Article

    Naturally occurring body movements and collective neural activity both exhibit complex dynamics, often with scale-free, fractal spatiotemporal structure. Scale-free dynamics of both brain and behavior are important because each is associated with functional benefits to the organism. Despite their similarities, scale-free brain activity and scale-free behavior have been studied separately, without a unified explanation. Here we show that scale-free dynamics of mouse behavior and neurons in visual cortex are strongly related. Surprisingly, the scale-free neural activity is limited to specific subsets of neurons, and these scale-free subsets exhibit stochastic winner-take-all competition with other neural subsets. This observation is inconsistent with prevailing theories of scale-free dynamics in neural systems, which stem from the criticality hypothesis. We develop a computational model which incorporates known cell-type-specific circuit structure, explaining our findings with a new type of critical dynamics. Our results establish neural underpinnings of scale-free behavior and clear behavioral relevance of scale-free neural activity.

    1. Neuroscience
    Barna Zajzon, David Dahmen ... Renato Duarte
    Research Article

    Information from the sensory periphery is conveyed to the cortex via structured projection pathways that spatially segregate stimulus features, providing a robust and efficient encoding strategy. Beyond sensory encoding, this prominent anatomical feature extends throughout the neocortex. However, the extent to which it influences cortical processing is unclear. In this study, we combine cortical circuit modeling with network theory to demonstrate that the sharpness of topographic projections acts as a bifurcation parameter, controlling the macroscopic dynamics and representational precision across a modular network. By shifting the balance of excitation and inhibition, topographic modularity gradually increases task performance and improves the signal-to-noise ratio across the system. We demonstrate that in biologically constrained networks, such a denoising behavior is contingent on recurrent inhibition. We show that this is a robust and generic structural feature that enables a broad range of behaviorally-relevant operating regimes, and provide an in-depth theoretical analysis unravelling the dynamical principles underlying the mechanism.