Superior colliculus drives stimulus-evoked directionally biased saccades and attempted head movements in head-fixed mice

  1. Sebastian H Zahler
  2. David E Taylor
  3. Joey Y Wong
  4. Julia M Adams
  5. Evan H Feinberg  Is a corresponding author
  1. University of California, San Francisco, United States

Abstract

Animals investigate their environments by directing their gaze towards salient stimuli. In the prevailing view, mouse gaze shifts entail head rotations followed by brainstem-mediated eye movements, including saccades to reset the eyes. These 'recentering' saccades are attributed to head movement-related vestibular cues. However, microstimulating mouse superior colliculus (SC) elicits directed head and eye movements resembling SC-dependent sensory-guided gaze shifts in other species, suggesting that mouse gaze shifts may be more flexible than has been recognized. We investigated this possibility by tracking eye and attempted head movements in a head-fixed preparation that eliminates head movement-related sensory cues. We found tactile stimuli evoke directionally biased saccades coincident with attempted head rotations. Differences in saccade endpoints across stimuli are associated with distinct stimulus-dependent relationships between initial eye position and saccade direction and amplitude. Optogenetic perturbations revealed SC drives these gaze shifts. Thus, head-fixed mice make sensory-guided, SC-dependent gaze shifts involving coincident, directionally biased saccades and attempted head movements. Our findings uncover flexibility in mouse gaze shifts and provide a foundation for studying head-eye coupling.

Data availability

Annotated data and model code have been uploaded to a Dryad repository (https://doi.org/10.7272/Q6V69GTV).

The following data sets were generated

Article and author information

Author details

  1. Sebastian H Zahler

    Department of Anatomy, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0089-3593
  2. David E Taylor

    Department of Anatomy, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0476-0299
  3. Joey Y Wong

    Department of Anatomy, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3697-8951
  4. Julia M Adams

    Department of Anatomy, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1402-1040
  5. Evan H Feinberg

    Department of Anatomy, University of California, San Francisco, San Francisco, United States
    For correspondence
    evan.feinberg@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7040-0980

Funding

National Institute of Mental Health (DP2MH119426)

  • Evan H Feinberg

National Institute of Neurological Disorders and Stroke (R01NS109060)

  • Evan H Feinberg

Simons Foundation Autism Research Initiative (574347)

  • Evan H Feinberg

Esther A. and Joseph Klingenstein Fund

  • Evan H Feinberg

E. Matilda Ziegler Foundation for the Blind

  • Evan H Feinberg

Whitehall Foundation

  • Evan H Feinberg

Brain and Behavior Research Foundation (25337)

  • Evan H Feinberg

Brain and Behavior Research Foundation (27320)

  • Evan H Feinberg

Sandler Foundation

  • Evan H Feinberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal procedures were approved by the University of California San Francisco Institutional Animal Care and Use Committee (IACUC) (protocol number AN176625), and were conducted in agreement with the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).

Copyright

© 2021, Zahler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,792
    views
  • 366
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sebastian H Zahler
  2. David E Taylor
  3. Joey Y Wong
  4. Julia M Adams
  5. Evan H Feinberg
(2021)
Superior colliculus drives stimulus-evoked directionally biased saccades and attempted head movements in head-fixed mice
eLife 10:e73081.
https://doi.org/10.7554/eLife.73081

Share this article

https://doi.org/10.7554/eLife.73081

Further reading

    1. Neuroscience
    Sharon Inberg, Yael Iosilevskii ... Benjamin Podbilewicz
    Research Article

    Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the Caenorhabditis elegans' arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals. We found that mechanosensory signals induced by conspecifics and by glass beads affect the dendritic structure of the PVD. Moreover, developmentally isolated animals show a decrease in their ability to respond to harsh touch. The structural and behavioral plasticity following sensory deprivation are functionally independent of each other and are mediated by an array of evolutionarily conserved mechanosensory amiloride-sensitive epithelial sodium channels (degenerins). Calcium imaging of the PVD neurons in a micromechanical device revealed that controlled mechanical stimulation of the body wall produces similar calcium dynamics in both isolated and crowded animals. Our genetic results, supported by optogenetic, behavioral, and pharmacological evidence, suggest an activity-dependent homeostatic mechanism for dendritic structural plasticity, that in parallel controls escape response to noxious mechanosensory stimuli.

    1. Neuroscience
    Raven Star Wallace, Bronte Mckeown ... Jonathan Smallwood
    Research Article

    Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the ‘here and now’ depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching. Our study established a novel method for mapping thought patterns onto the brain activity that occurs at different moments of a film, which does not disrupt the time course of brain activity or the movie-watching experience. We found moments when experience sampling highlighted engagement with multi-sensory features of the film or highlighted thoughts with episodic features, regions of sensory cortex were more active and subsequent memory for events in the movie was better—on the other hand, periods of intrusive distraction emerged when activity in regions of association cortex within the frontoparietal system was reduced. These results highlight the critical role sensory systems play in the multi-modal experience of movie-watching and provide evidence for the role of association cortex in reducing distraction when we watch films.