Superior colliculus drives stimulus-evoked directionally biased saccades and attempted head movements in head-fixed mice

  1. Sebastian H Zahler
  2. David E Taylor
  3. Joey Y Wong
  4. Julia M Adams
  5. Evan H Feinberg  Is a corresponding author
  1. University of California, San Francisco, United States

Abstract

Animals investigate their environments by directing their gaze towards salient stimuli. In the prevailing view, mouse gaze shifts entail head rotations followed by brainstem-mediated eye movements, including saccades to reset the eyes. These 'recentering' saccades are attributed to head movement-related vestibular cues. However, microstimulating mouse superior colliculus (SC) elicits directed head and eye movements resembling SC-dependent sensory-guided gaze shifts in other species, suggesting that mouse gaze shifts may be more flexible than has been recognized. We investigated this possibility by tracking eye and attempted head movements in a head-fixed preparation that eliminates head movement-related sensory cues. We found tactile stimuli evoke directionally biased saccades coincident with attempted head rotations. Differences in saccade endpoints across stimuli are associated with distinct stimulus-dependent relationships between initial eye position and saccade direction and amplitude. Optogenetic perturbations revealed SC drives these gaze shifts. Thus, head-fixed mice make sensory-guided, SC-dependent gaze shifts involving coincident, directionally biased saccades and attempted head movements. Our findings uncover flexibility in mouse gaze shifts and provide a foundation for studying head-eye coupling.

Data availability

Annotated data and model code have been uploaded to a Dryad repository (https://doi.org/10.7272/Q6V69GTV).

The following data sets were generated

Article and author information

Author details

  1. Sebastian H Zahler

    Department of Anatomy, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0089-3593
  2. David E Taylor

    Department of Anatomy, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0476-0299
  3. Joey Y Wong

    Department of Anatomy, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3697-8951
  4. Julia M Adams

    Department of Anatomy, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1402-1040
  5. Evan H Feinberg

    Department of Anatomy, University of California, San Francisco, San Francisco, United States
    For correspondence
    evan.feinberg@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7040-0980

Funding

National Institute of Mental Health (DP2MH119426)

  • Evan H Feinberg

National Institute of Neurological Disorders and Stroke (R01NS109060)

  • Evan H Feinberg

Simons Foundation Autism Research Initiative (574347)

  • Evan H Feinberg

Esther A. and Joseph Klingenstein Fund

  • Evan H Feinberg

E. Matilda Ziegler Foundation for the Blind

  • Evan H Feinberg

Whitehall Foundation

  • Evan H Feinberg

Brain and Behavior Research Foundation (25337)

  • Evan H Feinberg

Brain and Behavior Research Foundation (27320)

  • Evan H Feinberg

Sandler Foundation

  • Evan H Feinberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal procedures were approved by the University of California San Francisco Institutional Animal Care and Use Committee (IACUC) (protocol number AN176625), and were conducted in agreement with the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).

Copyright

© 2021, Zahler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,759
    views
  • 364
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sebastian H Zahler
  2. David E Taylor
  3. Joey Y Wong
  4. Julia M Adams
  5. Evan H Feinberg
(2021)
Superior colliculus drives stimulus-evoked directionally biased saccades and attempted head movements in head-fixed mice
eLife 10:e73081.
https://doi.org/10.7554/eLife.73081

Share this article

https://doi.org/10.7554/eLife.73081

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Bernhard Englitz, Sahar Akram ... Shihab Shamma
    Research Article

    Perception can be highly dependent on stimulus context, but whether and how sensory areas encode the context remains uncertain. We used an ambiguous auditory stimulus – a tritone pair – to investigate the neural activity associated with a preceding contextual stimulus that strongly influenced the tritone pair’s perception: either as an ascending or a descending step in pitch. We recorded single-unit responses from a population of auditory cortical cells in awake ferrets listening to the tritone pairs preceded by the contextual stimulus. We find that the responses adapt locally to the contextual stimulus, consistent with human MEG recordings from the auditory cortex under the same conditions. Decoding the population responses demonstrates that cells responding to pitch-changes are able to predict well the context-sensitive percept of the tritone pairs. Conversely, decoding the individual pitch representations and taking their distance in the circular Shepard tone space predicts the opposite of the percept. The various percepts can be readily captured and explained by a neural model of cortical activity based on populations of adapting, pitch and pitch-direction cells, aligned with the neurophysiological responses. Together, these decoding and model results suggest that contextual influences on perception may well be already encoded at the level of the primary sensory cortices, reflecting basic neural response properties commonly found in these areas.

    1. Neuroscience
    Yue Li, Qinyao Sun ... Jiaojian Wang
    Research Article

    Disentangling the evolution mysteries of the human brain has always been an imperative endeavor in neuroscience. Although many previous comparative studies revealed genetic, brain structural and connectivity distinctness between human and other nonhuman primates, the brain evolutional mechanism is still largely unclear. Here, we proposed to embed the brain anatomy of human and macaque in the developmental chronological axis to construct cross-species predictive model to quantitatively characterize brain evolution using two large public human and macaque datasets. We observed that applying the trained models within-species could well predict the chronological age. Interestingly, we found the model trained in macaque showed a higher accuracy in predicting the chronological age of human than the model trained in human in predicting the chronological age of macaque. The cross-application of the trained model introduced an individual brain cross-species age gap index to quantify the cross-species discrepancy along the temporal axis of brain development and was found to be associated with the behavioral performance in visual acuity test and picture vocabulary test in human. Taken together, our study situated the cross-species brain development along the chronological axis, which highlighted the disproportionately anatomical development in human brain to extend our understanding of the potential evolutionary effects.