Superior colliculus drives stimulus-evoked directionally biased saccades and attempted head movements in head-fixed mice
Abstract
Animals investigate their environments by directing their gaze towards salient stimuli. In the prevailing view, mouse gaze shifts entail head rotations followed by brainstem-mediated eye movements, including saccades to reset the eyes. These 'recentering' saccades are attributed to head movement-related vestibular cues. However, microstimulating mouse superior colliculus (SC) elicits directed head and eye movements resembling SC-dependent sensory-guided gaze shifts in other species, suggesting that mouse gaze shifts may be more flexible than has been recognized. We investigated this possibility by tracking eye and attempted head movements in a head-fixed preparation that eliminates head movement-related sensory cues. We found tactile stimuli evoke directionally biased saccades coincident with attempted head rotations. Differences in saccade endpoints across stimuli are associated with distinct stimulus-dependent relationships between initial eye position and saccade direction and amplitude. Optogenetic perturbations revealed SC drives these gaze shifts. Thus, head-fixed mice make sensory-guided, SC-dependent gaze shifts involving coincident, directionally biased saccades and attempted head movements. Our findings uncover flexibility in mouse gaze shifts and provide a foundation for studying head-eye coupling.
Data availability
Annotated data and model code have been uploaded to a Dryad repository (https://doi.org/10.7272/Q6V69GTV).
-
A new type of mouse gaze shift is led by directed saccadesDryad Digital Repository, doi:10.7272/dryad.Q6V69GTV.
Article and author information
Author details
Funding
National Institute of Mental Health (DP2MH119426)
- Evan H Feinberg
National Institute of Neurological Disorders and Stroke (R01NS109060)
- Evan H Feinberg
Simons Foundation Autism Research Initiative (574347)
- Evan H Feinberg
Esther A. and Joseph Klingenstein Fund
- Evan H Feinberg
E. Matilda Ziegler Foundation for the Blind
- Evan H Feinberg
Whitehall Foundation
- Evan H Feinberg
Brain and Behavior Research Foundation (25337)
- Evan H Feinberg
Brain and Behavior Research Foundation (27320)
- Evan H Feinberg
Sandler Foundation
- Evan H Feinberg
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal procedures were approved by the University of California San Francisco Institutional Animal Care and Use Committee (IACUC) (protocol number AN176625), and were conducted in agreement with the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).
Copyright
© 2021, Zahler et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,754
- views
-
- 364
- downloads
-
- 33
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
The brain predicts regularities in sensory inputs at multiple complexity levels, with neuronal mechanisms that remain elusive. Here, we monitored auditory cortex activity during the local-global paradigm, a protocol nesting different regularity levels in sound sequences. We observed that mice encode local predictions based on stimulus occurrence and stimulus transition probabilities, because auditory responses are boosted upon prediction violation. This boosting was due to both short-term adaptation and an adaptation-independent surprise mechanism resisting anesthesia. In parallel, and only in wakefulness, VIP interneurons responded to the omission of the locally expected sound repeat at the sequence ending, thus providing a chunking signal potentially useful for establishing global sequence structure. When this global structure was violated, by either shortening the sequence or ending it with a locally expected but globally unexpected sound transition, activity slightly increased in VIP and PV neurons, respectively. Hence, distinct cellular mechanisms predict different regularity levels in sound sequences.
-
- Neuroscience
Experience-based plasticity of the human cortex mediates the influence of individual experience on cognition and behavior. The complete loss of a sensory modality is among the most extreme such experiences. Investigating such a selective, yet extreme change in experience allows for the characterization of experience-based plasticity at its boundaries. Here, we investigated information processing in individuals who lost vision at birth or early in life by probing the processing of braille letter information. We characterized the transformation of braille letter information from sensory representations depending on the reading hand to perceptual representations that are independent of the reading hand. Using a multivariate analysis framework in combination with functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and behavioral assessment, we tracked cortical braille representations in space and time, and probed their behavioral relevance. We located sensory representations in tactile processing areas and perceptual representations in sighted reading areas, with the lateral occipital complex as a connecting ‘hinge’ region. This elucidates the plasticity of the visually deprived brain in terms of information processing. Regarding information processing in time, we found that sensory representations emerge before perceptual representations. This indicates that even extreme cases of brain plasticity adhere to a common temporal scheme in the progression from sensory to perceptual transformations. Ascertaining behavioral relevance through perceived similarity ratings, we found that perceptual representations in sighted reading areas, but not sensory representations in tactile processing areas are suitably formatted to guide behavior. Together, our results reveal a nuanced picture of both the potentials and limits of experience-dependent plasticity in the visually deprived brain.