Phox2b mutation mediated by Atoh1 expression impaired respiratory rhythm and ventilatory responses to hypoxia and hypercapnia

Abstract

Mutations in the transcription factor Phox2b cause congenital central hypoventilation syndrome (CCHS). The syndrome is characterized by hypoventilation and inability to regulate breathing to maintain adequate O2 and CO2 levels. The mechanism by which CCHS impact respiratory control are incompletely understood, and even less is known about the impact of the non-polyalanine repeat expansion mutations (NPARM) form. Our goal was to investigate the extent by which NPARM Phox2b mutation affect a) respiratory rhythm; b) ventilatory responses to hypercapnia (HCVR) and hypoxia (HVR) and c) number of chemosensitive neurons in mice. We used a transgenic mouse line carrying a conditional Phox2bΔ8 mutation (same found in humans with NPARM CCHS). We crossed them with Atoh1cre mice to introduce mutation in regions involved with respiratory function and central chemoreflex control. Ventilation was measured by plethysmograph during neonatal and adult life. In room air, mutation in neonates and adult did not greatly impact basal ventilation. However, Phox2bΔ8, Atoh1cre increased breath irregularity in adults. The HVR and HCVR were impaired in neonates. The HVR, but not HCVR was still partially compromised in adults. The mutation reduced the number of Phox2b+/TH- expressing neurons as well as the number of fos-activated cells within the ventral parafacial region (also named retrotrapezoid region - RTN) induced by hypercapnia. Our data indicates that Phox2bΔ8 mutation in Atoh1-expressing cells impaired RTN neurons, as well as chemoreflex under hypoxia and hypercapnia specially early in life. This study provided new evidence for mechanisms related to NPARM form of CCHS neuropathology.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1-6.

Article and author information

Author details

  1. Caroline B Ferreira

    Department of Pharmacology, University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  2. Talita M Silva

    Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  3. Phelipe E Silva

    Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Claudio L Castro

    Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  5. Catherine Czeisler

    Department of Pathology, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. José J Otero

    Department of Pathology, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ana C Takakura

    Department of Pharmacology, University of São Paulo, São Paulo, Brazil
    For correspondence
    takakura@icb.usp.br
    Competing interests
    The authors declare that no competing interests exist.
  8. Thiago S Moreira

    Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
    For correspondence
    tmoreira@icb.usp.br
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9789-8296

Funding

Fundação de Amparo à Pesquisa do Estado de São Paulo (2009/01236-4)

  • Ana C Takakura

Fundação de Amparo à Pesquisa do Estado de São Paulo (2015/23376-1)

  • Thiago S Moreira

NHLBI Division of Intramural Research (RO1HL132355)

  • José J Otero

Conselho Nacional de Desenvolvimento Científico e Tecnológico (302334/2019-0)

  • Thiago S Moreira

Conselho Nacional de Desenvolvimento Científico e Tecnológico (302288/2019-8)

  • Ana C Takakura

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was conducted in accordance with the University of Sao Paulo Institutional Animal Care and Use Committee guidelines (protocol number: 3618221019).

Copyright

© 2022, Ferreira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 709
    views
  • 126
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caroline B Ferreira
  2. Talita M Silva
  3. Phelipe E Silva
  4. Claudio L Castro
  5. Catherine Czeisler
  6. José J Otero
  7. Ana C Takakura
  8. Thiago S Moreira
(2022)
Phox2b mutation mediated by Atoh1 expression impaired respiratory rhythm and ventilatory responses to hypoxia and hypercapnia
eLife 11:e73130.
https://doi.org/10.7554/eLife.73130

Share this article

https://doi.org/10.7554/eLife.73130

Further reading

    1. Neuroscience
    Sharon Inberg, Yael Iosilevskii ... Benjamin Podbilewicz
    Research Article

    Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the Caenorhabditis elegans' arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals. We found that mechanosensory signals induced by conspecifics and by glass beads affect the dendritic structure of the PVD. Moreover, developmentally isolated animals show a decrease in their ability to respond to harsh touch. The structural and behavioral plasticity following sensory deprivation are functionally independent of each other and are mediated by an array of evolutionarily conserved mechanosensory amiloride-sensitive epithelial sodium channels (degenerins). Calcium imaging of the PVD neurons in a micromechanical device revealed that controlled mechanical stimulation of the body wall produces similar calcium dynamics in both isolated and crowded animals. Our genetic results, supported by optogenetic, behavioral, and pharmacological evidence, suggest an activity-dependent homeostatic mechanism for dendritic structural plasticity, that in parallel controls escape response to noxious mechanosensory stimuli.

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neuron during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amyplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, ensuring adaptive responses to varying levels of danger.