Phox2b mutation mediated by Atoh1 expression impaired respiratory rhythm and ventilatory responses to hypoxia and hypercapnia

Abstract

Mutations in the transcription factor Phox2b cause congenital central hypoventilation syndrome (CCHS). The syndrome is characterized by hypoventilation and inability to regulate breathing to maintain adequate O2 and CO2 levels. The mechanism by which CCHS impact respiratory control are incompletely understood, and even less is known about the impact of the non-polyalanine repeat expansion mutations (NPARM) form. Our goal was to investigate the extent by which NPARM Phox2b mutation affect a) respiratory rhythm; b) ventilatory responses to hypercapnia (HCVR) and hypoxia (HVR) and c) number of chemosensitive neurons in mice. We used a transgenic mouse line carrying a conditional Phox2bΔ8 mutation (same found in humans with NPARM CCHS). We crossed them with Atoh1cre mice to introduce mutation in regions involved with respiratory function and central chemoreflex control. Ventilation was measured by plethysmograph during neonatal and adult life. In room air, mutation in neonates and adult did not greatly impact basal ventilation. However, Phox2bΔ8, Atoh1cre increased breath irregularity in adults. The HVR and HCVR were impaired in neonates. The HVR, but not HCVR was still partially compromised in adults. The mutation reduced the number of Phox2b+/TH- expressing neurons as well as the number of fos-activated cells within the ventral parafacial region (also named retrotrapezoid region - RTN) induced by hypercapnia. Our data indicates that Phox2bΔ8 mutation in Atoh1-expressing cells impaired RTN neurons, as well as chemoreflex under hypoxia and hypercapnia specially early in life. This study provided new evidence for mechanisms related to NPARM form of CCHS neuropathology.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1-6.

Article and author information

Author details

  1. Caroline B Ferreira

    Department of Pharmacology, University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  2. Talita M Silva

    Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  3. Phelipe E Silva

    Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Claudio L Castro

    Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  5. Catherine Czeisler

    Department of Pathology, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. José J Otero

    Department of Pathology, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ana C Takakura

    Department of Pharmacology, University of São Paulo, São Paulo, Brazil
    For correspondence
    takakura@icb.usp.br
    Competing interests
    The authors declare that no competing interests exist.
  8. Thiago S Moreira

    Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
    For correspondence
    tmoreira@icb.usp.br
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9789-8296

Funding

Fundação de Amparo à Pesquisa do Estado de São Paulo (2009/01236-4)

  • Ana C Takakura

Fundação de Amparo à Pesquisa do Estado de São Paulo (2015/23376-1)

  • Thiago S Moreira

NHLBI Division of Intramural Research (RO1HL132355)

  • José J Otero

Conselho Nacional de Desenvolvimento Científico e Tecnológico (302334/2019-0)

  • Thiago S Moreira

Conselho Nacional de Desenvolvimento Científico e Tecnológico (302288/2019-8)

  • Ana C Takakura

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Muriel Thoby-Brisson, CNRS Université de Bordeaux, France

Ethics

Animal experimentation: This study was conducted in accordance with the University of Sao Paulo Institutional Animal Care and Use Committee guidelines (protocol number: 3618221019).

Version history

  1. Preprint posted: August 10, 2021 (view preprint)
  2. Received: August 17, 2021
  3. Accepted: November 14, 2022
  4. Accepted Manuscript published: November 17, 2022 (version 1)
  5. Version of Record published: November 23, 2022 (version 2)

Copyright

© 2022, Ferreira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 651
    views
  • 118
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caroline B Ferreira
  2. Talita M Silva
  3. Phelipe E Silva
  4. Claudio L Castro
  5. Catherine Czeisler
  6. José J Otero
  7. Ana C Takakura
  8. Thiago S Moreira
(2022)
Phox2b mutation mediated by Atoh1 expression impaired respiratory rhythm and ventilatory responses to hypoxia and hypercapnia
eLife 11:e73130.
https://doi.org/10.7554/eLife.73130

Share this article

https://doi.org/10.7554/eLife.73130

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Andrea I Luppi, Pedro AM Mediano ... Emmanuel A Stamatakis
    Research Article

    How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a ‘synergistic global workspace’, comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain’s default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.

    1. Neuroscience
    Liu Zhou, Wei Wei ... Zijiang J He
    Research Article

    We reliably judge locations of static objects when we walk despite the retinal images of these objects moving with every step we take. Here, we showed our brains solve this optical illusion by adopting an allocentric spatial reference frame. We measured perceived target location after the observer walked a short distance from the home base. Supporting the allocentric coding scheme, we found the intrinsic bias , which acts as a spatial reference frame for perceiving location of a dimly lit target in the dark, remained grounded at the home base rather than traveled along with the observer. The path-integration mechanism responsible for this can utilize both active and passive (vestibular) translational motion signals, but only along the horizontal direction. This asymmetric path-integration finding in human visual space perception is reminiscent of the asymmetric spatial memory finding in desert ants, pointing to nature’s wondrous and logically simple design for terrestrial creatures.