Phox2b mutation mediated by Atoh1 expression impaired respiratory rhythm and ventilatory responses to hypoxia and hypercapnia

Abstract

Mutations in the transcription factor Phox2b cause congenital central hypoventilation syndrome (CCHS). The syndrome is characterized by hypoventilation and inability to regulate breathing to maintain adequate O2 and CO2 levels. The mechanism by which CCHS impact respiratory control are incompletely understood, and even less is known about the impact of the non-polyalanine repeat expansion mutations (NPARM) form. Our goal was to investigate the extent by which NPARM Phox2b mutation affect a) respiratory rhythm; b) ventilatory responses to hypercapnia (HCVR) and hypoxia (HVR) and c) number of chemosensitive neurons in mice. We used a transgenic mouse line carrying a conditional Phox2bΔ8 mutation (same found in humans with NPARM CCHS). We crossed them with Atoh1cre mice to introduce mutation in regions involved with respiratory function and central chemoreflex control. Ventilation was measured by plethysmograph during neonatal and adult life. In room air, mutation in neonates and adult did not greatly impact basal ventilation. However, Phox2bΔ8, Atoh1cre increased breath irregularity in adults. The HVR and HCVR were impaired in neonates. The HVR, but not HCVR was still partially compromised in adults. The mutation reduced the number of Phox2b+/TH- expressing neurons as well as the number of fos-activated cells within the ventral parafacial region (also named retrotrapezoid region - RTN) induced by hypercapnia. Our data indicates that Phox2bΔ8 mutation in Atoh1-expressing cells impaired RTN neurons, as well as chemoreflex under hypoxia and hypercapnia specially early in life. This study provided new evidence for mechanisms related to NPARM form of CCHS neuropathology.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1-6.

Article and author information

Author details

  1. Caroline B Ferreira

    Department of Pharmacology, University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  2. Talita M Silva

    Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  3. Phelipe E Silva

    Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Claudio L Castro

    Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  5. Catherine Czeisler

    Department of Pathology, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. José J Otero

    Department of Pathology, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ana C Takakura

    Department of Pharmacology, University of São Paulo, São Paulo, Brazil
    For correspondence
    takakura@icb.usp.br
    Competing interests
    The authors declare that no competing interests exist.
  8. Thiago S Moreira

    Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
    For correspondence
    tmoreira@icb.usp.br
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9789-8296

Funding

Fundação de Amparo à Pesquisa do Estado de São Paulo (2009/01236-4)

  • Ana C Takakura

Fundação de Amparo à Pesquisa do Estado de São Paulo (2015/23376-1)

  • Thiago S Moreira

NHLBI Division of Intramural Research (RO1HL132355)

  • José J Otero

Conselho Nacional de Desenvolvimento Científico e Tecnológico (302334/2019-0)

  • Thiago S Moreira

Conselho Nacional de Desenvolvimento Científico e Tecnológico (302288/2019-8)

  • Ana C Takakura

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Muriel Thoby-Brisson, CNRS Université de Bordeaux, France

Ethics

Animal experimentation: This study was conducted in accordance with the University of Sao Paulo Institutional Animal Care and Use Committee guidelines (protocol number: 3618221019).

Version history

  1. Preprint posted: August 10, 2021 (view preprint)
  2. Received: August 17, 2021
  3. Accepted: November 14, 2022
  4. Accepted Manuscript published: November 17, 2022 (version 1)
  5. Version of Record published: November 23, 2022 (version 2)

Copyright

© 2022, Ferreira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 612
    Page views
  • 113
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caroline B Ferreira
  2. Talita M Silva
  3. Phelipe E Silva
  4. Claudio L Castro
  5. Catherine Czeisler
  6. José J Otero
  7. Ana C Takakura
  8. Thiago S Moreira
(2022)
Phox2b mutation mediated by Atoh1 expression impaired respiratory rhythm and ventilatory responses to hypoxia and hypercapnia
eLife 11:e73130.
https://doi.org/10.7554/eLife.73130

Share this article

https://doi.org/10.7554/eLife.73130

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.