Structural organization and dynamics of FCHo2 docking on membranes

  1. Fatima El Alaoui
  2. Ignacio Casuso
  3. David Sanchez-Fuentes
  4. Charlotte Arpin-Andre
  5. Raissa Rathar
  6. Volker Baecker
  7. Anna Castro
  8. Thierry Lorca
  9. Julien Viaud
  10. Stéphane Vassilopoulos
  11. Adrien Carretero-Genevrier
  12. Laura Picas  Is a corresponding author
  1. CNRS UMR 9004, Université de Montpellier, France
  2. U1067 INSERM, Aix-Marseille Université, France
  3. CNRS UMR 5214, Université de Montpellier, France
  4. CNRS, INSERM, University of Montpellier, France
  5. CNRS UMR Université de Montpellier, France
  6. UMR1297, University of Toulouse, France
  7. Sorbonne Université, INSERM, France

Abstract

Clathrin-mediated endocytosis (CME) is a central trafficking pathway in eukaryotic cells regulated by phosphoinositides. The plasma membrane phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) plays an instrumental role in driving CME initiation. The F-BAR domain only protein 1 and 2 complex (FCHo1/2) is among the early proteins that reach the plasma membrane, but the exact mechanisms triggering its recruitment remain elusive. Here, we show the molecular dynamics of FCHo2 self-assembly on membranes by combining minimal reconstituted in vitro and cellular systems. Our results indicate that PI(4,5)P2 domains assist FCHo2 docking at specific membrane regions, where it self-assembles into ring-like shape protein patches. We show that the binding of FCHo2 on cellular membranes promotes PI(4,5)P2 clustering at the boundary of cargo receptors and that this accumulation enhances clathrin assembly. Thus, our results provide a mechanistic framework that could explain the recruitment of early PI(4,5)P2-interacting proteins at endocytic sites.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file. Datasets are available at Dryad, doi:10.5061/dryad.n8pk0p2wp

The following data sets were generated

Article and author information

Author details

  1. Fatima El Alaoui

    Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3298-4078
  2. Ignacio Casuso

    U1067 INSERM, Aix-Marseille Université, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. David Sanchez-Fuentes

    Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Charlotte Arpin-Andre

    Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Raissa Rathar

    Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8766-2186
  6. Volker Baecker

    Montpellier Ressources Imagerie, BioCampus Montpellier, CNRS, INSERM, University of Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9129-6403
  7. Anna Castro

    Centre de Biologie Cellulaire de Montpellier (CRBM), CNRS UMR Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Thierry Lorca

    Centre de Biologie Cellulaire de Montpellier (CRBM), CNRS UMR Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Julien Viaud

    Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, University of Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4406-5642
  10. Stéphane Vassilopoulos

    Sorbonne Université, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0172-330X
  11. Adrien Carretero-Genevrier

    Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0488-9452
  12. Laura Picas

    Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004, Université de Montpellier, Montpellier, France
    For correspondence
    laura.picas@irim.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5619-5228

Funding

Agence Nationale de la Recherche (ANR-10-INBS-04)

  • Volker Baecker

ATIP-Avenir (AO-2016)

  • Laura Picas

Agence Nationale de la Recherche (ANR-18-CE13-0015-02)

  • Laura Picas

European Research Council (No.803004)

  • Adrien Carretero-Genevrier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. José D Faraldo-Gómez, National Heart, Lung and Blood Institute, National Institutes of Health, United States

Version history

  1. Preprint posted: April 20, 2021 (view preprint)
  2. Received: August 19, 2021
  3. Accepted: January 18, 2022
  4. Accepted Manuscript published: January 19, 2022 (version 1)
  5. Version of Record published: January 28, 2022 (version 2)

Copyright

© 2022, El Alaoui et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,641
    views
  • 276
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fatima El Alaoui
  2. Ignacio Casuso
  3. David Sanchez-Fuentes
  4. Charlotte Arpin-Andre
  5. Raissa Rathar
  6. Volker Baecker
  7. Anna Castro
  8. Thierry Lorca
  9. Julien Viaud
  10. Stéphane Vassilopoulos
  11. Adrien Carretero-Genevrier
  12. Laura Picas
(2022)
Structural organization and dynamics of FCHo2 docking on membranes
eLife 11:e73156.
https://doi.org/10.7554/eLife.73156

Share this article

https://doi.org/10.7554/eLife.73156

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Shun Kai Yang, Shintaroh Kubo ... Khanh Huy Bui
    Research Article

    Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.

    1. Structural Biology and Molecular Biophysics
    Sebastian Jojoa-Cruz, Adrienne E Dubin ... Andrew B Ward
    Research Advance

    The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.