Excitatory neurotransmission activates compartmentalized calcium transients in Müller glia without affecting lateral process motility

  1. Joshua M Tworig
  2. Chandler Coate
  3. Marla B Feller  Is a corresponding author
  1. University of California, Berkeley, United States

Abstract

Neural activity has been implicated in the motility and outgrowth of glial cell processes throughout the central nervous system. Here we explore this phenomenon in Müller glia, which are specialized radial astroglia that are the predominant glial type of the vertebrate retina. Müller glia extend fine filopodia-like processes into retinal synaptic layers, in similar fashion to brain astrocytes and radial glia which exhibit perisynaptic processes. Using two-photon volumetric imaging, we found that during the second postnatal week, Müller glial processes were highly dynamic, with rapid extensions and retractions that were mediated by cytoskeletal rearrangements. During this same stage of development, retinal waves led to increases in cytosolic calcium within Müller glial lateral processes and stalks. These comprised distinct calcium compartments, distinguished by variable participation in waves, timing, and sensitivity to an M1 muscarinic acetylcholine receptor antagonist. However, we found that motility of lateral processes was unaffected by the presence of pharmacological agents that enhanced or blocked wave-associated calcium transients. Finally, we found that mice lacking normal cholinergic waves in the first postnatal week also exhibited normal Müller glial process morphology. Hence, outgrowth of Müller glial lateral processes into synaptic layers is determined by factors that are independent of neuronal activity.

Data availability

Source data for all figures is available and is uploaded to a linked Dryad repository as well as directly with this submission.

The following data sets were generated

Article and author information

Author details

  1. Joshua M Tworig

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Chandler Coate

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Marla B Feller

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    mfeller@berkeley.edu
    Competing interests
    Marla B Feller, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9137-5849

Funding

National Science Foundation (DGE 1752814)

  • Joshua M Tworig

National Institutes of Health (R01EY019498)

  • Joshua M Tworig
  • Marla B Feller

National Institutes of Health (R01EY013528)

  • Joshua M Tworig
  • Marla B Feller

National Eye Institute (P30EY003176)

  • Joshua M Tworig
  • Marla B Feller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the University of California, Berkeley. The protocol was approved by the University of California Animal Care and Use Committee Office for Animal Care and Use (Protocol Number: AUP-2015-10-8080-1).

Copyright

© 2021, Tworig et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,058
    views
  • 155
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joshua M Tworig
  2. Chandler Coate
  3. Marla B Feller
(2021)
Excitatory neurotransmission activates compartmentalized calcium transients in Müller glia without affecting lateral process motility
eLife 10:e73202.
https://doi.org/10.7554/eLife.73202

Share this article

https://doi.org/10.7554/eLife.73202

Further reading

    1. Developmental Biology
    2. Neuroscience
    Agnik Dasgupta, Caleb C Reagor ... AJ Hudspeth
    Research Article

    In a developing nervous system, axonal arbors often undergo complex rearrangements before neural circuits attain their final innervation topology. In the lateral line sensory system of the zebrafish, developing sensory axons reorganize their terminal arborization patterns to establish precise neural microcircuits around the mechanosensory hair cells. However, a quantitative understanding of the changes in the sensory arbor morphology and the regulators behind the microcircuit assembly remain enigmatic. Here, we report that Semaphorin7A (Sema7A) acts as an important mediator of these processes. Utilizing a semi-automated three-dimensional neurite tracing methodology and computational techniques, we have identified and quantitatively analyzed distinct topological features that shape the network in wild-type and Sema7A loss-of-function mutants. In contrast to those of wild-type animals, the sensory axons in Sema7A mutants display aberrant arborizations with disorganized network topology and diminished contacts to hair cells. Moreover, ectopic expression of a secreted form of Sema7A by non-hair cells induces chemotropic guidance of sensory axons. Our findings propose that Sema7A likely functions both as a juxtracrine and as a secreted cue to pattern neural circuitry during sensory organ development.

    1. Neuroscience
    Eun Joo Kim, Mi-Seon Kong ... Jeansok John Kim
    Research Article

    Pavlovian fear conditioning research suggests that the interaction between the dorsal periaqueductal gray (dPAG) and basolateral amygdala (BLA) acts as a prediction error mechanism in the formation of associative fear memories. However, their roles in responding to naturalistic predatory threats, characterized by less explicit cues and the absence of reiterative trial-and-error learning events, remain unexplored. In this study, we conducted single-unit recordings in rats during an ‘approach food-avoid predator’ task, focusing on the responsiveness of dPAG and BLA neurons to a rapidly approaching robot predator. Optogenetic stimulation of the dPAG triggered fleeing behaviors and increased BLA activity in naive rats. Notably, BLA neurons activated by dPAG stimulation displayed immediate responses to the robot, demonstrating heightened synchronous activity compared to BLA neurons that did not respond to dPAG stimulation. Additionally, the use of anterograde and retrograde tracer injections into the dPAG and BLA, respectively, coupled with c-Fos activation in response to predatory threats, indicates that the midline thalamus may play an intermediary role in innate antipredatory-defensive functioning.