Clp protease and antisense RNA jointly regulate the global regulator CarD to mediate mycobacterial starvation response

  1. Xinfeng Li
  2. Fang Chen
  3. Xiaoyu Liu
  4. Jinfeng Xiao
  5. Binda T Andongma
  6. Qing Tang
  7. Xiaojian Cao
  8. Shan-Ho Chou
  9. Michael Y Galperin
  10. Jin He  Is a corresponding author
  1. Huazhong Agricultural University, China
  2. National Institutes of Health, United States

Abstract

Under starvation conditions, bacteria tend to slow down their translation rate by reducing rRNA synthesis, but the way they accomplish that may vary in different bacteria. In Mycobacterium species, transcription of rRNA is activated by the RNA polymerase (RNAP) accessory transcription factor CarD, which interacts directly with RNAP to stabilize the RNAP-promoter open complex formed on rRNA genes. The functions of CarD have been extensively studied, but the mechanisms that control its expression remain obscure. Here, we report that the level of CarD was tightly regulated when mycobacterial cells switched from nutrient-rich to nutrient-deprived conditions. At the translational level, an antisense RNA of carD (AscarD) was induced in a SigF-dependent manner to bind with carD mRNA and inhibit CarD translation, while at the post-translational level, the residual intracellular CarD was quickly degraded by the Clp protease. AscarD thus worked synergistically with Clp protease to decrease the CarD level to help mycobacterial cells cope with the nutritional stress. Altogether, our work elucidates the regulation mode of CarD and delineates a new mechanism for the mycobacterial starvation response, which is important for the adaptation and persistence of mycobacterial pathogens in the host environment.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1, 4, 5 and 6. These Source Data contain the numerical data used to generate the figures.

Article and author information

Author details

  1. Xinfeng Li

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Fang Chen

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1663-3737
  3. Xiaoyu Liu

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jinfeng Xiao

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Binda T Andongma

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Qing Tang

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaojian Cao

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Shan-Ho Chou

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Y Galperin

    National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2265-5572
  10. Jin He

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    For correspondence
    hejin@mail.hzau.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1456-8284

Funding

National Natural Science Foundation of China (31770087)

  • Jin He

National Natural Science Foundation of China (31900057)

  • Qing Tang

National Natural Science Foundation of China (31970074)

  • Jin He

National Natural Science Foundation of China (32171424)

  • Jin He

China Postdoctoral Science Foundation (2019M662654)

  • Xinfeng Li

Intramural Research Program of the U.S. National Library of Medicine at the NIH

  • Michael Y Galperin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,745
    views
  • 279
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xinfeng Li
  2. Fang Chen
  3. Xiaoyu Liu
  4. Jinfeng Xiao
  5. Binda T Andongma
  6. Qing Tang
  7. Xiaojian Cao
  8. Shan-Ho Chou
  9. Michael Y Galperin
  10. Jin He
(2022)
Clp protease and antisense RNA jointly regulate the global regulator CarD to mediate mycobacterial starvation response
eLife 11:e73347.
https://doi.org/10.7554/eLife.73347

Share this article

https://doi.org/10.7554/eLife.73347

Further reading

    1. Microbiology and Infectious Disease
    Han Kang Tee, Simon Crouzet ... Caroline Tapparel
    Research Article Updated

    Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as the model and demonstrated that, unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167 G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes. We experimentally confirmed that this pH-independent entry is not associated with the use of HS as an attachment receptor but rather with compromised capsid stability. We then extended these findings to another HS-dependent strain. In summary, our data indicate that the acquisition of capsid mutations conferring affinity for HS comes together with decreased capsid stability and allows EV-A71 to enter the cell via a pH-independent pathway. This pH-independent entry mechanism boosts viral replication in cell lines but may prove deleterious in vivo, especially for enteric viruses crossing the acidic gastric environment before reaching their primary replication site, the intestine. Our study thus provides new insight into the mechanisms underlying the in vivo attenuation of HS-binding EV-A71 strains. Not only are these viruses hindered in tissues rich in HS due to viral trapping, as generally accepted, but our research reveals that their diminished capsid stability further contributes to attenuation in vivo. This underscores the complex relationship between HS-binding, capsid stability, and viral fitness, where increased replication in cell lines coincides with attenuation in harsh in vivo environments like the gastrointestinal tract.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Louna Fruchard, Anamaria Babosan ... Zeynep Baharoglu
    Research Article

    Tgt is the enzyme modifying the guanine (G) in tRNAs with GUN anticodon to queuosine (Q). tgt is required for optimal growth of Vibrio cholerae in the presence of sub-lethal aminoglycoside concentrations. We further explored here the role of the Q34 in the efficiency of codon decoding upon tobramycin exposure. We characterized its impact on the overall bacterial proteome, and elucidated the molecular mechanisms underlying the effects of Q34 modification in antibiotic translational stress response. Using molecular reporters, we showed that Q34 impacts the efficiency of decoding at tyrosine TAT and TAC codons. Proteomics analyses revealed that the anti-SoxR factor RsxA is better translated in the absence of tgt. RsxA displays a codon bias toward tyrosine TAT and overabundance of RsxA leads to decreased expression of genes belonging to SoxR oxidative stress regulon. We also identified conditions that regulate tgt expression. We propose that regulation of Q34 modification in response to environmental cues leads to translational reprogramming of transcripts bearing a biased tyrosine codon usage. In silico analysis further identified candidate genes which could be subject to such translational regulation, among which DNA repair factors. Such transcripts, fitting the definition of modification tunable transcripts, are central in the bacterial response to antibiotics.