Predictive modeling reveals that higher-order cooperativity drives transcriptional repression in a synthetic developmental enhancer

  1. Yang Joon Kim
  2. Kaitlin Rhee
  3. Jonathan Liu
  4. Selene Jeammet
  5. Meghan A Turner
  6. Stephen J Small
  7. Hernan G Garcia  Is a corresponding author
  1. University of California, Berkeley, United States
  2. École Polytechnique, France
  3. New York University, United States

Abstract

A challenge in quantitative biology is to predict output patterns of gene expression from knowledge of input transcription factor patterns and from the arrangement of binding sites for these transcription factors on regulatory DNA. We tested whether widespread thermodynamic models could be used to infer parameters describing simple regulatory architectures that inform parameter-free predictions of more complex enhancers in the context of transcriptional repression by Runt in the early fruit fly embryo. By modulating the number and placement of Runt binding sites within an enhancer, and quantifying the resulting transcriptional activity using live imaging, we discovered that thermodynamic models call for higher-order cooperativity between multiple molecular players. This higher-order cooperativity capture the combinatorial complexity underlying eukaryotic transcriptional regulation and cannot be determined from simpler regulatory architectures, highlighting the challenges in reaching a predictive understanding of transcriptional regulation in eukaryotes and calling for approaches that quantitatively dissect their molecular nature.

Data availability

All data (both input transcription factor concentration and output transcription from all synthetic enhancers, both pre- and post-processed data) have been deposited in Dryad under the doi (https://doi.org/10.5061/dryad.7sqv9s4sv).

The following data sets were generated

Article and author information

Author details

  1. Yang Joon Kim

    Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1742-5657
  2. Kaitlin Rhee

    Department of Chemical Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jonathan Liu

    Department of Physics, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Selene Jeammet

    Department of Biology, École Polytechnique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Meghan A Turner

    Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephen J Small

    Department of Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hernan G Garcia

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    hggarcia@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5212-3649

Funding

Burroughs Wellcome Fund (Career Award)

  • Hernan G Garcia

Sloan Research Foundation

  • Hernan G Garcia

Human Frontier Science Program

  • Hernan G Garcia

Searle Scholars Program

  • Hernan G Garcia

Shurl and Kay Curci Foundation

  • Hernan G Garcia

Hellman Foundation

  • Hernan G Garcia

National Institute of Health (DP2 OD024541-01)

  • Hernan G Garcia

National Science Foundation (1652236)

  • Hernan G Garcia

Korea Foundation for Advanced Studies (Graduate Student Fellowship)

  • Yang Joon Kim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jie Xiao, Johns Hopkins University, United States

Version history

  1. Preprint posted: July 29, 2021 (view preprint)
  2. Received: August 27, 2021
  3. Accepted: December 9, 2022
  4. Accepted Manuscript published: December 12, 2022 (version 1)
  5. Version of Record published: January 12, 2023 (version 2)

Copyright

© 2022, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,308
    views
  • 163
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yang Joon Kim
  2. Kaitlin Rhee
  3. Jonathan Liu
  4. Selene Jeammet
  5. Meghan A Turner
  6. Stephen J Small
  7. Hernan G Garcia
(2022)
Predictive modeling reveals that higher-order cooperativity drives transcriptional repression in a synthetic developmental enhancer
eLife 11:e73395.
https://doi.org/10.7554/eLife.73395

Share this article

https://doi.org/10.7554/eLife.73395

Further reading

    1. Microbiology and Infectious Disease
    Brian G Vassallo, Noemie Scheidel ... Dennis H Kim
    Research Article

    The microbiota is a key determinant of the physiology and immunity of animal hosts. The factors governing the transmissibility of viruses between susceptible hosts are incompletely understood. Bacteria serve as food for Caenorhabditis elegans and represent an integral part of the natural environment of C. elegans. We determined the effects of bacteria isolated with C. elegans from its natural environment on the transmission of Orsay virus in C. elegans using quantitative virus transmission and host susceptibility assays. We observed that Ochrobactrum species promoted Orsay virus transmission, whereas Pseudomonas lurida MYb11 attenuated virus transmission relative to the standard laboratory bacterial food Escherichia coli OP50. We found that pathogenic Pseudomonas aeruginosa strains PA01 and PA14 further attenuated virus transmission. We determined that the amount of Orsay virus required to infect 50% of a C. elegans population on P. lurida MYb11 compared with Ochrobactrum vermis MYb71 was dramatically increased, over three orders of magnitude. Host susceptibility was attenuated even further in the presence of P. aeruginosa PA14. Genetic analysis of the determinants of P. aeruginosa required for attenuation of C. elegans susceptibility to Orsay virus infection revealed a role for regulators of quorum sensing. Our data suggest that distinct constituents of the C. elegans microbiota and potential pathogens can have widely divergent effects on Orsay virus transmission, such that associated bacteria can effectively determine host susceptibility versus resistance to viral infection. Our study provides quantitative evidence for a critical role for tripartite host-virus-bacteria interactions in determining the transmissibility of viruses among susceptible hosts.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Carlo Giannangelo, Matthew P Challis ... Darren J Creek
    Research Article

    New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum (PfA-M1) and Plasmodium vivax (PvA-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets PfA-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on PfA-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of PfA-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.