Oxytocin neurons mediate the effect of social isolation via the VTA circuits

Abstract

Social interaction during adolescence strongly influences brain function and behavior, and the recent pandemic has emphasized the devastating effect of social distancing on mental health. While accumulating evidence has shown the importance of the reward system in encoding specific aspects of social interaction, the consequences of social isolation on the reward system and the development of social skills later in adulthood are still largely unknown. Here, we found that one week of social isolation during adolescence in male mice increased social interaction at the expense of social habituation and social novelty preference. Behavioral changes were accompanied by the acute hyperexcitability of putative dopamine (pDA) neurons in the ventral tegmental area (VTA) and long-lasting expression of GluA2-lacking AMPARs at excitatory inputs onto pDA neurons that project to the prefrontal cortex (PFC). Social isolation-dependent behavioral deficits and changes in neural activity and synaptic plasticity were reversed by chemogenetic inhibition of oxytocin neurons in the paraventricular nucleus (PVN) of the hypothalamus. These results demonstrate that social isolation in male mice has acute and long-lasting effects on social interaction and suggest that homeostatic adaptations mediate these effects within the reward circuit.

Data availability

All data generated or analysed during this study and the statistical results are included in the manuscript and supporting files. Source raw data files have been provided for all the figures and supplement figures: Figures 1 source data, Figures 2 source data, Figures 3 source data, Figures 4 source data, Figures 5 source data, Figures 6 source data, Figure 1-figure supplement 1 source data, Figure 1-figure supplement 2 source data, Figure 1-figure supplement 3 source data, Figure 3-figure supplement 1 source data, Figure 4 -figure supplement 1 source data, Figure 4 -figure supplement 2 source data, Figure 5 -figure supplement 1 source data.

Article and author information

Author details

  1. Stefano Musardo

    Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0392-0905
  2. Alessandro Contestabile

    Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6528-1403
  3. Marit Knoop

    Laboratory of Child Growth and Development, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Olivier Baud

    Laboratory of Child Growth and Development, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Camilla Bellone

    Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
    For correspondence
    Camilla.Bellone@unige.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6774-6275

Funding

Swiss National Science Foundation (31003A_182326)

  • Camilla Bellone

ERC consolidator Grant (864552)

  • Camilla Bellone

NCCR Synapsy (51NF40-185897)

  • Camilla Bellone

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joseph F Cheer, University of Maryland School of Medicine, United States

Ethics

Animal experimentation: All the procedures performed at UNIGE complied with the Swiss National Institutional Guidelines on Animal Experimentation and were approved by the Swiss Cantonal Veterinary Office Committees for Animal Experimentation (Licence number GE-168/18).

Version history

  1. Received: August 27, 2021
  2. Preprint posted: September 6, 2021 (view preprint)
  3. Accepted: April 13, 2022
  4. Accepted Manuscript published: April 22, 2022 (version 1)
  5. Version of Record published: May 6, 2022 (version 2)

Copyright

© 2022, Musardo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,766
    views
  • 846
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefano Musardo
  2. Alessandro Contestabile
  3. Marit Knoop
  4. Olivier Baud
  5. Camilla Bellone
(2022)
Oxytocin neurons mediate the effect of social isolation via the VTA circuits
eLife 11:e73421.
https://doi.org/10.7554/eLife.73421

Share this article

https://doi.org/10.7554/eLife.73421

Further reading

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent stimulated dopamine release in male rats, as well as opposite effects of the a6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The a6-selective blocker, a-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this a6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of a6 nAChR and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at a6-containing nAChRs to drive inhibitory GABA tone on dopamine release.

    1. Neuroscience
    Jongkyun Kang, Guodong Huang ... Jie Shen
    Research Article

    Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson’s disease (PD). However, whether LRRK2 mutations cause PD and degeneration of dopaminergic (DA) neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether Lrrk2 and its functional homolog Lrrk1 play a cell-intrinsic role in DA neuron survival through the development of DA neuron-specific Lrrk conditional double knockout (cDKO) mice. Unlike Lrrk germline DKO mice, DA neuron-restricted Lrrk cDKO mice exhibit normal mortality but develop age-dependent loss of DA neurons, as shown by the progressive reduction of DA neurons in the substantia nigra pars compacta (SNpc) at the ages of 20 and 24 months. Moreover, DA neurodegeneration is accompanied with increases in apoptosis and elevated microgliosis in the SNpc as well as decreases in DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the cell-intrinsic requirement of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.