Enhanced specificity mutations perturb allosteric signaling in CRISPR-Cas9

  1. Lukasz Nierzwicki
  2. Kyle W East
  3. Uriel N Morzan
  4. Pablo R Arantes
  5. Victor S Batista
  6. George P Lisi  Is a corresponding author
  7. Giulia Palermo  Is a corresponding author
  1. University of California, Riverside, United States
  2. Brown University, United States
  3. International Centre for Theoretical Physics, Italy
  4. Yale University, United States

Abstract

CRISPR-Cas9 is a molecular tool with transformative genome editing capabilities. At the molecular level, an intricate allosteric signaling is critical for DNA cleavage, but its role in the specificity enhancement of the Cas9 endonuclease is poorly understood. Here, multi-microsecond molecular dynamics is combined with solution NMR and graph theory-derived models to probe the allosteric role of key specificity-enhancing mutations. We show that mutations responsible for increasing the specificity of Cas9 alter the allosteric structure of the catalytic HNH domain, impacting the signal transmission from the DNA recognition region to the catalytic sites for cleavage. Specifically, the K855A mutation strongly disrupts the allosteric connectivity of the HNH domain, exerting the highest perturbation on the signaling transfer, while K810A and K848A result in more moderate effects on the allosteric communication. This differential perturbation of the allosteric signal correlates to the order of specificity enhancement (K855A > K848A ~ K810A) observed in biochemical studies, with the mutation achieving the highest specificity most strongly perturbing the signaling transfer. These findings suggest that alterations of the allosteric communication from DNA recognition to cleavage are critical to increasing the specificity of Cas9 and that allosteric hotspots can be targeted through mutational studies for improving the system's function.

Data availability

Analysis codes and script files can be downloaded from Github: https://github.com/palermolabResonance assignments for the HNH structure are available at bmrb.io under BMRB entry 27949.

Article and author information

Author details

  1. Lukasz Nierzwicki

    Department of Bioengineering, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kyle W East

    Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Uriel N Morzan

    International Centre for Theoretical Physics, Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Pablo R Arantes

    Department of Bioengineering, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Victor S Batista

    Department of Chemistry, Yale University, New Heaven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. George P Lisi

    Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, United States
    For correspondence
    george_lisi@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Giulia Palermo

    Department of Bioengineering, University of California, Riverside, Riverside, United States
    For correspondence
    giulia.palermo@ucr.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1404-8737

Funding

National Institutes of Health (R01GM141329)

  • Giulia Palermo

National Science Foundation (CHE-1905374)

  • Giulia Palermo

National Institutes of Health (R01GM136815)

  • Victor S Batista
  • George P Lisi
  • Giulia Palermo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Nierzwicki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,782
    views
  • 311
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lukasz Nierzwicki
  2. Kyle W East
  3. Uriel N Morzan
  4. Pablo R Arantes
  5. Victor S Batista
  6. George P Lisi
  7. Giulia Palermo
(2021)
Enhanced specificity mutations perturb allosteric signaling in CRISPR-Cas9
eLife 10:e73601.
https://doi.org/10.7554/eLife.73601

Share this article

https://doi.org/10.7554/eLife.73601

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Douwe Schulte, Marta Šiborová ... Joost Snijder
    Research Article

    Antibodies are a major component of adaptive immunity against invading pathogens. Here, we explore possibilities for an analytical approach to characterize the antigen-specific antibody repertoire directly from the secreted proteins in convalescent serum. This approach aims to perform simultaneous antibody sequencing and epitope mapping using a combination of single particle cryo-electron microscopy (cryoEM) and bottom-up proteomics techniques based on mass spectrometry (LC-MS/MS). We evaluate the performance of the deep-learning tool ModelAngelo in determining de novo antibody sequences directly from reconstructed 3D volumes of antibody-antigen complexes. We demonstrate that while map quality is a critical bottleneck, it is possible to sequence antibody variable domains from cryoEM reconstructions with accuracies of up to 80–90%. While the rate of errors exceeds the typical levels of somatic hypermutation, we show that the ModelAngelo-derived sequences can be used to assign the used V-genes. This provides a functional guide to assemble de novo peptides from LC-MS/MS data more accurately and improves the tolerance to a background of polyclonal antibody sequences. Following this proof-of-principle, we discuss the feasibility and future directions of this approach to characterize antigen-specific antibody repertoires.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yamato Niitani, Kohei Matsuzaki ... Michio Tomishige
    Research Article

    The two identical motor domains (heads) of dimeric kinesin-1 move in a hand-over-hand process along a microtubule, coordinating their ATPase cycles such that each ATP hydrolysis is tightly coupled to a step and enabling the motor to take many steps without dissociating. The neck linker, a structural element that connects the two heads, has been shown to be essential for head–head coordination; however, which kinetic step(s) in the chemomechanical cycle is ‘gated’ by the neck linker remains unresolved. Here, we employed pre-steady-state kinetics and single-molecule assays to investigate how the neck-linker conformation affects kinesin’s motility cycle. We show that the backward-pointing configuration of the neck linker in the front kinesin head confers higher affinity for microtubule, but does not change ATP binding and dissociation rates. In contrast, the forward-pointing configuration of the neck linker in the rear kinesin head decreases the ATP dissociation rate but has little effect on microtubule dissociation. In combination, these conformation-specific effects of the neck linker favor ATP hydrolysis and dissociation of the rear head prior to microtubule detachment of the front head, thereby providing a kinetic explanation for the coordinated walking mechanism of dimeric kinesin.