Tradeoff breaking as model of evolutionary transitions in individuality and the limits of the fitness-decoupling metaphor

  1. Pierrick Bourrat  Is a corresponding author
  2. Guilhem Doulcier  Is a corresponding author
  3. Caroline J Rose
  4. Paul B Rainey
  5. Katrin Hammerschmidt  Is a corresponding author
  1. Macquarie University, Australia
  2. Centre d'Écologie Fonctionnelle et Évolutive, CNRS, France
  3. Max Planck Institute for Evolutionary Biology, Germany
  4. Kiel University, Germany

Abstract

Evolutionary transitions in individuality (ETIs) involve the formation of Darwinian collectives from Darwinian particles. The transition from cells to multicellular life is a prime example. During an ETI, collectives become units of selection in their own right. However, the underlying processes are poorly understood. One observation used to identify the completion of an ETI is an increase in collective-level performance accompanied by a decrease in particle-level performance, for example measured by growth rate. This seemingly counterintuitive dynamic has been referred to as 'fitness decoupling' and has been used to interpret both models and experimental data. Extending and unifying results from the literature, we show that fitness of particles and collectives can never decouple because calculations of particle and collective fitness performed over appropriate and equivalent time intervals are necessarily the same provided the population reaches a stable collective size distribution. By way of solution, we draw attention to the value of mechanistic approaches that emphasise traits, and tradeoffs among traits, as opposed to fitness. This trait-based approach is sufficient to capture dynamics that underpin evolutionary transitions. In addition, drawing upon both experimental and theoretical studies, we show that while early stages of transitions might often involve tradeoffs among particle traits, later—and critical-stages are likely to involve the rupture of such tradeoffs. Thus, when observed in the context of ETIs, tradeoff-breaking events stand as a useful marker for these transitions.

Data availability

The code implementing the models is publicly available on Zenodo (https://doi.org/10.5281/zenodo.5352208)For Figure 1: Protocol described and statistical analysis performed in Hammerschmidt et al. (2014). Dataset published as Rose et al. (2018). For Figure 6b: Data taken from Colon-Lopez et al (1997); Mohr et al (2013); Misra & Tuli (2000); Berman-Frank et al (2001); Popa et al. (2007) and standardised.For Figure 6c: Data taken from the dataset published as Rose et al. (2018).

The following previously published data sets were used

Article and author information

Author details

  1. Pierrick Bourrat

    Philosophy Department, Macquarie University, Sydney, Australia
    For correspondence
    p.bourrat@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4465-6015
  2. Guilhem Doulcier

    Philosophy Department, Macquarie University, Sydney, Australia
    For correspondence
    guihem.doulcier@normalesup.org
    Competing interests
    No competing interests declared.
  3. Caroline J Rose

    Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Montpellier, France
    Competing interests
    No competing interests declared.
  4. Paul B Rainey

    Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
    Competing interests
    Paul B Rainey, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0879-5795
  5. Katrin Hammerschmidt

    Institute of Microbiology, Kiel University, Kiel, Germany
    For correspondence
    katrinhammerschmidt@googlemail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0172-8995

Funding

John Templeton Foundation (62220)

  • Pierrick Bourrat
  • Guilhem Doulcier
  • Katrin Hammerschmidt

Max Planck Institute for Evolutionary Biology (open access funding)

  • Paul B Rainey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Will Ratcliff, Georgia Institute of Technology, United States

Version history

  1. Preprint posted: September 2, 2021 (view preprint)
  2. Received: September 8, 2021
  3. Accepted: June 28, 2022
  4. Accepted Manuscript published: August 17, 2022 (version 1)
  5. Version of Record published: September 13, 2022 (version 2)

Copyright

© 2022, Bourrat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,190
    Page views
  • 266
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pierrick Bourrat
  2. Guilhem Doulcier
  3. Caroline J Rose
  4. Paul B Rainey
  5. Katrin Hammerschmidt
(2022)
Tradeoff breaking as model of evolutionary transitions in individuality and the limits of the fitness-decoupling metaphor
eLife 11:e73715.
https://doi.org/10.7554/eLife.73715

Share this article

https://doi.org/10.7554/eLife.73715

Further reading

    1. Evolutionary Biology
    Zhiliang Zhang, Zhifei Zhang ... Guoxiang Li
    Research Article

    Biologically-controlled mineralization producing organic-inorganic composites (hard skeletons) by metazoan biomineralizers has been an evolutionary innovation since the earliest Cambrian. Among them, linguliform brachiopods are one of the key invertebrates that secrete calcium phosphate minerals to build their shells. One of the most distinct shell structures is the organo-phosphatic cylindrical column exclusive to phosphatic-shelled brachiopods, including both crown and stem groups. However, the complexity, diversity, and biomineralization processes of these microscopic columns are far from clear in brachiopod ancestors. Here, exquisitely well-preserved columnar shell ultrastructures are reported for the first time in the earliest eoobolids Latusobolus xiaoyangbaensis gen. et sp. nov. and Eoobolus acutulus sp. nov. from the Cambrian Series 2 Shuijingtuo Formation of South China. The hierarchical shell architectures, epithelial cell moulds, and the shape and size of cylindrical columns are scrutinised in these new species. Their calcium phosphate-based biomineralized shells are mainly composed of stacked sandwich columnar units. The secretion and construction of the stacked sandwich model of columnar architecture, which played a significant role in the evolution of linguliforms, is highly biologically controlled and organic-matrix mediated. Furthermore, a continuous transformation of anatomic features resulting from the growth of diverse columnar shells is revealed between Eoobolidae, Lingulellotretidae, and Acrotretida, shedding new light on the evolutionary growth and adaptive innovation of biomineralized columnar architecture among early phosphatic-shelled brachiopods during the Cambrian explosion.

    1. Developmental Biology
    2. Evolutionary Biology
    Eman Hijaze, Tsvia Gildor ... Smadar Ben-Tabou de-Leon
    Research Article

    Biomineralization had apparently evolved independently in different phyla, using distinct minerals, organic scaffolds, and gene regulatory networks (GRNs). However, diverse eukaryotes from unicellular organisms, through echinoderms to vertebrates, use the actomyosin network during biomineralization. Specifically, the actomyosin remodeling protein, Rho-associated coiled-coil kinase (ROCK) regulates cell differentiation and gene expression in vertebrates’ biomineralizing cells, yet, little is known on ROCK’s role in invertebrates’ biomineralization. Here, we reveal that ROCK controls the formation, growth, and morphology of the calcite spicules in the sea urchin larva. ROCK expression is elevated in the sea urchin skeletogenic cells downstream of the Vascular Endothelial Growth Factor (VEGF) signaling. ROCK inhibition leads to skeletal loss and disrupts skeletogenic gene expression. ROCK inhibition after spicule formation reduces the spicule elongation rate and induces ectopic spicule branching. Similar skeletogenic phenotypes are observed when ROCK is inhibited in a skeletogenic cell culture, indicating that these phenotypes are due to ROCK activity specifically in the skeletogenic cells. Reduced skeletal growth and enhanced branching are also observed under direct perturbations of the actomyosin network. We propose that ROCK and the actomyosin machinery were employed independently, downstream of distinct GRNs, to regulate biomineral growth and morphology in Eukaryotes.