Tradeoff breaking as model of evolutionary transitions in individuality and the limits of the fitness-decoupling metaphor

  1. Pierrick Bourrat  Is a corresponding author
  2. Guilhem Doulcier  Is a corresponding author
  3. Caroline J Rose
  4. Paul B Rainey
  5. Katrin Hammerschmidt  Is a corresponding author
  1. Macquarie University, Australia
  2. Centre d'Écologie Fonctionnelle et Évolutive, CNRS, France
  3. Max Planck Institute for Evolutionary Biology, Germany
  4. Kiel University, Germany

Abstract

Evolutionary transitions in individuality (ETIs) involve the formation of Darwinian collectives from Darwinian particles. The transition from cells to multicellular life is a prime example. During an ETI, collectives become units of selection in their own right. However, the underlying processes are poorly understood. One observation used to identify the completion of an ETI is an increase in collective-level performance accompanied by a decrease in particle-level performance, for example measured by growth rate. This seemingly counterintuitive dynamic has been referred to as 'fitness decoupling' and has been used to interpret both models and experimental data. Extending and unifying results from the literature, we show that fitness of particles and collectives can never decouple because calculations of particle and collective fitness performed over appropriate and equivalent time intervals are necessarily the same provided the population reaches a stable collective size distribution. By way of solution, we draw attention to the value of mechanistic approaches that emphasise traits, and tradeoffs among traits, as opposed to fitness. This trait-based approach is sufficient to capture dynamics that underpin evolutionary transitions. In addition, drawing upon both experimental and theoretical studies, we show that while early stages of transitions might often involve tradeoffs among particle traits, later—and critical-stages are likely to involve the rupture of such tradeoffs. Thus, when observed in the context of ETIs, tradeoff-breaking events stand as a useful marker for these transitions.

Data availability

The code implementing the models is publicly available on Zenodo (https://doi.org/10.5281/zenodo.5352208)For Figure 1: Protocol described and statistical analysis performed in Hammerschmidt et al. (2014). Dataset published as Rose et al. (2018). For Figure 6b: Data taken from Colon-Lopez et al (1997); Mohr et al (2013); Misra & Tuli (2000); Berman-Frank et al (2001); Popa et al. (2007) and standardised.For Figure 6c: Data taken from the dataset published as Rose et al. (2018).

The following previously published data sets were used

Article and author information

Author details

  1. Pierrick Bourrat

    Philosophy Department, Macquarie University, Sydney, Australia
    For correspondence
    p.bourrat@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4465-6015
  2. Guilhem Doulcier

    Philosophy Department, Macquarie University, Sydney, Australia
    For correspondence
    guihem.doulcier@normalesup.org
    Competing interests
    No competing interests declared.
  3. Caroline J Rose

    Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Montpellier, France
    Competing interests
    No competing interests declared.
  4. Paul B Rainey

    Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
    Competing interests
    Paul B Rainey, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0879-5795
  5. Katrin Hammerschmidt

    Institute of Microbiology, Kiel University, Kiel, Germany
    For correspondence
    katrinhammerschmidt@googlemail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0172-8995

Funding

John Templeton Foundation (62220)

  • Pierrick Bourrat
  • Guilhem Doulcier
  • Katrin Hammerschmidt

Max Planck Institute for Evolutionary Biology (open access funding)

  • Paul B Rainey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Bourrat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,342
    views
  • 284
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pierrick Bourrat
  2. Guilhem Doulcier
  3. Caroline J Rose
  4. Paul B Rainey
  5. Katrin Hammerschmidt
(2022)
Tradeoff breaking as model of evolutionary transitions in individuality and the limits of the fitness-decoupling metaphor
eLife 11:e73715.
https://doi.org/10.7554/eLife.73715

Share this article

https://doi.org/10.7554/eLife.73715

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Hanna Tutaj, Katarzyna Tomala ... Ryszard Korona
    Research Article

    The loss of a single chromosome in a diploid organism halves the dosage of many genes and is usually accompanied by a substantial decrease in fitness. We asked whether this decrease simply reflects the joint damage caused by individual gene dosage deficiencies. We measured the fitness effects of single heterozygous gene deletions in yeast and combined them for each chromosome. This predicted a negative growth rate, that is, lethality, for multiple monosomies. However, monosomic strains remained alive and grew as if much (often most) of the damage caused by single mutations had disappeared, revealing an exceptionally large and positive epistatic component of fitness. We looked for functional explanations by analyzing the transcriptomes. There was no evidence of increased (compensatory) gene expression on the monosomic chromosomes. Nor were there signs of the cellular stress response that would be expected if monosomy led to protein destabilization and thus cytotoxicity. Instead, all monosomic strains showed extensive upregulation of genes encoding ribosomal proteins, but in an indiscriminate manner that did not correspond to their altered dosage. This response did not restore the stoichiometry required for efficient biosynthesis, which probably became growth limiting, making all other mutation-induced metabolic defects much less important. In general, the modular structure of the cell leads to an effective fragmentation of the total mutational load. Defects outside the module(s) currently defining fitness lose at least some of their relevance, producing the epiphenomenon of positive interactions between individually negative effects.

    1. Evolutionary Biology
    2. Medicine
    Rion Brattig-Correia, Joana M Almeida ... Paulo Navarro-Costa
    Tools and Resources

    Male germ cells share a common origin across animal species, therefore they likely retain a conserved genetic program that defines their cellular identity. However, the unique evolutionary dynamics of male germ cells coupled with their widespread leaky transcription pose significant obstacles to the identification of the core spermatogenic program. Through network analysis of the spermatocyte transcriptome of vertebrate and invertebrate species, we describe the conserved evolutionary origin of metazoan male germ cells at the molecular level. We estimate the average functional requirement of a metazoan male germ cell to correspond to the expression of approximately 10,000 protein-coding genes, a third of which defines a genetic scaffold of deeply conserved genes that has been retained throughout evolution. Such scaffold contains a set of 79 functional associations between 104 gene expression regulators that represent a core component of the conserved genetic program of metazoan spermatogenesis. By genetically interfering with the acquisition and maintenance of male germ cell identity, we uncover 161 previously unknown spermatogenesis genes and three new potential genetic causes of human infertility. These findings emphasize the importance of evolutionary history on human reproductive disease and establish a cross-species analytical pipeline that can be repurposed to other cell types and pathologies.