Improvement of muscle strength in a mouse model for congenital myopathy treated with HDAC and DNA methyltransferase inhibitors

  1. Alexis Ruiz
  2. Sofia Benucci
  3. Urs Duthaler
  4. Christoph Bachmann
  5. Martina Franchini
  6. Faiza Noreen
  7. Laura Pietrangelo
  8. Feliciano Protasi
  9. Susan Treves
  10. Francesco Zorzato  Is a corresponding author
  1. Basel University Hospital, Switzerland
  2. University of Basel, Switzerland
  3. University G d' Annunzio of Chieti, Italy

Abstract

To date there are no therapies for patients with congenital myopathies, muscle disorders causing poor quality of life of affected individuals. In approximately 30% of the cases, patients with congenital myopathies carry either dominant or recessive mutations in the RYR1 gene; recessive RYR1 mutations are accompanied by reduction of RyR1 expression and content in skeletal muscles and are associated with fiber hypotrophy and muscle weakness. Importantly, muscles of patients with recessive RYR1 mutations exhibit increased content of class II histone de-acetylases and of DNA genomic methylation. We recently created a mouse model knocked-in for the p.Q1970fsX16+p.A4329D RyR1 mutations, which are isogenic to those carried by a severely affected child suffering from a recessive form of RyR1-related multi-mini core disease. The phenotype of the RyR1 mutant mice recapitulates many aspects of the clinical picture of patients carrying recessive RYR1 mutations. We treated the compound heterozygous mice with a combination of two drugs targeting DNA methylases and class II histone de-acetylases. Here we show that treatment of the mutant mice with drugs targeting epigenetic enzymes improves muscle strength, RyR1 protein content and muscle ultrastructure. This study provides proof of concept for the pharmacological treatment of patients with congenital myopathies linked to recessive RYR1 mutations.

Data availability

All data, code, and materials used in the analysis are available in some form to any researcher for purposes of reproducing or extending the analysis. There are no restrictions on materials, such as materials transfer agreements (MTAs). All data are available in the main text or the supplementary materials.

Article and author information

Author details

  1. Alexis Ruiz

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Sofia Benucci

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Urs Duthaler

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7811-3932
  4. Christoph Bachmann

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Martina Franchini

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Faiza Noreen

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Laura Pietrangelo

    Department of Neuroscience, Imaging and Clinical Science, University G d' Annunzio of Chieti, Chieti, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Feliciano Protasi

    Department of Neuroscience, Imaging and Clinical Science, University G d' Annunzio of Chieti, Chieti, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Susan Treves

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0007-9631
  10. Francesco Zorzato

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    For correspondence
    fzorzato@usb.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8469-7065

Funding

Swiss National Science Foundation (SNF 310030_184765)

  • Susan Treves

Swiss Muscle Foundation (FRSMM)

  • Francesco Zorzato

NeRAB

  • Susan Treves

RYR1 Foundation

  • Francesco Zorzato

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations of the Basel Stadt Kantonal authorities. All animals were handled according to approved institutional animal care and use committee. The protocols were approved by the Kantonal Veterinary Authorities included in Licence permits numbers 1728 and 2950

Copyright

© 2022, Ruiz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,572
    views
  • 220
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexis Ruiz
  2. Sofia Benucci
  3. Urs Duthaler
  4. Christoph Bachmann
  5. Martina Franchini
  6. Faiza Noreen
  7. Laura Pietrangelo
  8. Feliciano Protasi
  9. Susan Treves
  10. Francesco Zorzato
(2022)
Improvement of muscle strength in a mouse model for congenital myopathy treated with HDAC and DNA methyltransferase inhibitors
eLife 11:e73718.
https://doi.org/10.7554/eLife.73718

Share this article

https://doi.org/10.7554/eLife.73718

Further reading

    1. Cell Biology
    2. Medicine
    Judith Hüttemeister, Franziska Rudolph ... Michael Gotthardt
    Research Article

    The giant striated muscle protein titin integrates into the developing sarcomere to form a stable myofilament system that is extended as myocytes fuse. The logistics underlying myofilament assembly and disassembly have started to emerge with the possibility to follow labeled sarcomere components. Here, we generated the mCherry knock-in at titin’s Z-disk to study skeletal muscle development and remodeling. We find titin’s integration into the sarcomere tightly regulated and its unexpected mobility facilitating a homogeneous distribution of titin after cell fusion – an integral part of syncytium formation and maturation of skeletal muscle. In adult mCherry-titin mice, treatment of muscle injury by implantation of titin-eGFP myoblasts reveals how myocytes integrate, fuse, and contribute to the continuous myofilament system across cell boundaries. Unlike in immature primary cells, titin proteins are retained at the proximal nucleus and do not diffuse across the whole syncytium with implications for future cell-based therapies of skeletal muscle disease.

    1. Medicine
    2. Neuroscience
    Chi Zhang, Qian Huang ... Yun Guan
    Research Article

    Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3-induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive DRG neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain. Moreover, we unravel the underlying neuronal mechanisms of pain inhibition induced by FLO and HC-HA/PTX3.