Improvement of muscle strength in a mouse model for congenital myopathy treated with HDAC and DNA methyltransferase inhibitors

  1. Alexis Ruiz
  2. Sofia Benucci
  3. Urs Duthaler
  4. Christoph Bachmann
  5. Martina Franchini
  6. Faiza Noreen
  7. Laura Pietrangelo
  8. Feliciano Protasi
  9. Susan Treves
  10. Francesco Zorzato  Is a corresponding author
  1. Basel University Hospital, Switzerland
  2. University of Basel, Switzerland
  3. University G d' Annunzio of Chieti, Italy

Abstract

To date there are no therapies for patients with congenital myopathies, muscle disorders causing poor quality of life of affected individuals. In approximately 30% of the cases, patients with congenital myopathies carry either dominant or recessive mutations in the RYR1 gene; recessive RYR1 mutations are accompanied by reduction of RyR1 expression and content in skeletal muscles and are associated with fiber hypotrophy and muscle weakness. Importantly, muscles of patients with recessive RYR1 mutations exhibit increased content of class II histone de-acetylases and of DNA genomic methylation. We recently created a mouse model knocked-in for the p.Q1970fsX16+p.A4329D RyR1 mutations, which are isogenic to those carried by a severely affected child suffering from a recessive form of RyR1-related multi-mini core disease. The phenotype of the RyR1 mutant mice recapitulates many aspects of the clinical picture of patients carrying recessive RYR1 mutations. We treated the compound heterozygous mice with a combination of two drugs targeting DNA methylases and class II histone de-acetylases. Here we show that treatment of the mutant mice with drugs targeting epigenetic enzymes improves muscle strength, RyR1 protein content and muscle ultrastructure. This study provides proof of concept for the pharmacological treatment of patients with congenital myopathies linked to recessive RYR1 mutations.

Data availability

All data, code, and materials used in the analysis are available in some form to any researcher for purposes of reproducing or extending the analysis. There are no restrictions on materials, such as materials transfer agreements (MTAs). All data are available in the main text or the supplementary materials.

Article and author information

Author details

  1. Alexis Ruiz

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Sofia Benucci

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Urs Duthaler

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7811-3932
  4. Christoph Bachmann

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Martina Franchini

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Faiza Noreen

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Laura Pietrangelo

    Department of Neuroscience, Imaging and Clinical Science, University G d' Annunzio of Chieti, Chieti, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Feliciano Protasi

    Department of Neuroscience, Imaging and Clinical Science, University G d' Annunzio of Chieti, Chieti, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Susan Treves

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0007-9631
  10. Francesco Zorzato

    Department of Biomedicine, Basel University Hospital, Basel, Switzerland
    For correspondence
    fzorzato@usb.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8469-7065

Funding

Swiss National Science Foundation (SNF 310030_184765)

  • Susan Treves

Swiss Muscle Foundation (FRSMM)

  • Francesco Zorzato

NeRAB

  • Susan Treves

RYR1 Foundation

  • Francesco Zorzato

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations of the Basel Stadt Kantonal authorities. All animals were handled according to approved institutional animal care and use committee. The protocols were approved by the Kantonal Veterinary Authorities included in Licence permits numbers 1728 and 2950

Copyright

© 2022, Ruiz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,513
    views
  • 215
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexis Ruiz
  2. Sofia Benucci
  3. Urs Duthaler
  4. Christoph Bachmann
  5. Martina Franchini
  6. Faiza Noreen
  7. Laura Pietrangelo
  8. Feliciano Protasi
  9. Susan Treves
  10. Francesco Zorzato
(2022)
Improvement of muscle strength in a mouse model for congenital myopathy treated with HDAC and DNA methyltransferase inhibitors
eLife 11:e73718.
https://doi.org/10.7554/eLife.73718

Share this article

https://doi.org/10.7554/eLife.73718

Further reading

    1. Cancer Biology
    2. Medicine
    Anastasia D Komarova, Snezhana D Sinyushkina ... Marina V Shirmanova
    Research Article

    Heterogeneity of tumor metabolism is an important, but still poorly understood aspect of tumor biology. Present work is focused on the visualization and quantification of cellular metabolic heterogeneity of colorectal cancer using fluorescence lifetime imaging (FLIM) of redox cofactor NAD(P)H. FLIM-microscopy of NAD(P)H was performed in vitro in four cancer cell lines (HT29, HCT116, CaCo2 and CT26), in vivo in the four types of colorectal tumors in mice and ex vivo in patients’ tumor samples. The dispersion and bimodality of the decay parameters were evaluated to quantify the intercellular metabolic heterogeneity. Our results demonstrate that patients’ colorectal tumors have significantly higher heterogeneity of energy metabolism compared with cultured cells and tumor xenografts, which was displayed as a wider and frequently bimodal distribution of a contribution of a free (glycolytic) fraction of NAD(P)H within a sample. Among patients’ tumors, the dispersion was larger in the high-grade and early stage ones, without, however, any association with bimodality. These results indicate that cell-level metabolic heterogeneity assessed from NAD(P)H FLIM has a potential to become a clinical prognostic factor.

    1. Medicine
    Sindre Lee-Ødegård, Marit Hjorth ... Kåre Inge Birkeland
    Research Article

    Background:

    Physical activity has been associated with preventing the development of type 2 diabetes and atherosclerotic cardiovascular disease. However, our understanding of the precise molecular mechanisms underlying these effects remains incomplete and good biomarkers to objectively assess physical activity are lacking.

    Methods:

    We analyzed 3072 serum proteins in 26 men, normal weight or overweight, undergoing 12 weeks of a combined strength and endurance exercise intervention. We estimated insulin sensitivity with hyperinsulinemic euglycemic clamp, maximum oxygen uptake, muscle strength, and used MRI/MRS to evaluate body composition and organ fat depots. Muscle and subcutaneous adipose tissue biopsies were used for mRNA sequencing. Additional association analyses were performed in samples from up to 47,747 individuals in the UK Biobank, as well as using two-sample Mendelian randomization and mice models.

    Results:

    Following 12 weeks of exercise intervention, we observed significant changes in 283 serum proteins. Notably, 66 of these proteins were elevated in overweight men and positively associated with liver fat before the exercise regimen, but were normalized after exercise. Furthermore, for 19.7 and 12.1% of the exercise-responsive proteins, corresponding changes in mRNA expression levels in muscle and fat, respectively, were shown. The protein CD300LG displayed consistent alterations in blood, muscle, and fat. Serum CD300LG exhibited positive associations with insulin sensitivity, and to angiogenesis-related gene expression in both muscle and fat. Furthermore, serum CD300LG was positively associated with physical activity and negatively associated with glucose levels in the UK Biobank. In this sample, the association between serum CD300LG and physical activity was significantly stronger in men than in women. Mendelian randomization analysis suggested potential causal relationships between levels of serum CD300LG and fasting glucose, 2 hr glucose after an oral glucose tolerance test, and HbA1c. Additionally, Cd300lg responded to exercise in a mouse model, and we observed signs of impaired glucose tolerance in male, but not female, Cd300lg knockout mice.

    Conclusions:

    Our study identified several novel proteins in serum whose levels change in response to prolonged exercise and were significantly associated with body composition, liver fat, and glucose homeostasis. Serum CD300LG increased with physical activity and is a potential causal link to improved glucose levels. CD300LG may be a promising exercise biomarker and a therapeutic target in type 2 diabetes.

    Funding:

    South-Eastern Norway Regional Health Authority, Simon Fougners Fund, Diabetesforbundet, Johan Selmer Kvanes’ legat til forskning og bekjempelse av sukkersyke. The UK Biobank resource reference 53641. Australian National Health and Medical Research Council Investigator Grant (APP2017942). Australian Research Council Discovery Early Career Award (DE220101226). Research Council of Norway (Project grant: 325640 and Mobility grant: 287198). The Medical Student Research Program at the University of Oslo. Novo Nordisk Fonden Excellence Emerging Grant in Endocrinology and Metabolism 2023 (NNF23OC0082123).

    Clinical trial number:

    clinicaltrials.gov: NCT01803568.