In vivo MRI is sensitive to remyelination in a nonhuman primate model of multiple sclerosis

  1. Maxime Donadieu
  2. Nathanael J Lee
  3. María I Gaitán
  4. Seung-Kwon Ha
  5. Nicholas J Luciano
  6. Snehashis Roy
  7. Benjamin V Ineichen
  8. Emily C Leibovitch
  9. Cecil C Yen
  10. Dzung L Pham
  11. Afonso C Silva
  12. Mac Johnson
  13. Steve Jacobson
  14. Pascal Sati  Is a corresponding author
  15. Daniel S Reich  Is a corresponding author
  1. National Institute of Neurological Disorders and Stroke, United States
  2. University of Pittsburgh, United States
  3. National Institute of Mental Health, United States
  4. Vertex Phamaceuticals Inc, United States
  5. Cedars-Sinai Medical Center, United States

Abstract

Remyelination is crucial to recover from inflammatory demyelination in multiple sclerosis (MS). Investigating remyelination in vivo using magnetic resonance imaging (MRI) is difficult in MS, where collecting serial short-interval scans is challenging. Using experimental autoimmune encephalomyelitis (EAE) in common marmosets, a model of MS that recapitulates focal cerebral inflammatory demyelinating lesions, we investigated whether MRI is sensitive to, and can characterize, remyelination. In 6 animals followed with multisequence 7-tesla MRI, 31 focal lesions, predicted to be demyelinated or remyelinated based on signal intensity on proton density-weighted images, were subsequently assessed with histopathology. Remyelination occurred in 4 of 6 marmosets and 45% of lesions. Radiological-pathological comparison showed that MRI had high statistical sensitivity (100%) and specificity (90%) for detecting remyelination. This study demonstrates the prevalence of spontaneous remyelination in marmoset EAE and the ability of in vivo MRI to detect it, with implications for preclinical testing of pro-remyelinating agents.

Data availability

All of the 6 marmosets' serial in vivo MRI images, including all the sequences used for analysis and figure generation, were uploaded in an easily accessible format (NIFTI). The file names are titled with the corresponding animal # used in the manuscript, as well as the date of MRI acquisition. All the Iba1 and PLP immunohistochemistry stains have been uploaded as well.

Article and author information

Author details

  1. Maxime Donadieu

    Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  2. Nathanael J Lee

    Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  3. María I Gaitán

    Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  4. Seung-Kwon Ha

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  5. Nicholas J Luciano

    Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  6. Snehashis Roy

    Section on Neural Function, National Institute of Mental Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  7. Benjamin V Ineichen

    Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  8. Emily C Leibovitch

    Viral Immunology Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  9. Cecil C Yen

    Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  10. Dzung L Pham

    Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  11. Afonso C Silva

    Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  12. Mac Johnson

    Vertex Phamaceuticals Inc, Boston, United States
    Competing interests
    Mac Johnson, is a shareholder and employee of Vertex Pharmaceuticals, Inc..
  13. Steve Jacobson

    Viral immunology section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3127-1287
  14. Pascal Sati

    Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, United States
    For correspondence
    Pascal.Sati@cshs.org
    Competing interests
    No competing interests declared.
  15. Daniel S Reich

    Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    For correspondence
    reichds@ninds.nih.gov
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2628-4334

Funding

National Institutes of Health (Intramural Research Program)

  • Nathanael J Lee

Adelson Family Foundation

  • Maxime Donadieu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The study was performed under the guideline and in accordance with the National Institutes of Health IACUC. Specifically, the neuroethics committee of the National Institutes of Neurological Diseases and Stroke formally went through our manuscript prior to submission on salient topics including minimization of pain, justification of number of animals and the sex ratio, dosing of methylprednisone based on available human data. All procedures were performed under anesthesia to minimize discomfort and pain. Animals were housed in pairs or triplets to maximize social interactions and well-being. The institutional IACUC protocol number is #1308.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,163
    views
  • 180
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maxime Donadieu
  2. Nathanael J Lee
  3. María I Gaitán
  4. Seung-Kwon Ha
  5. Nicholas J Luciano
  6. Snehashis Roy
  7. Benjamin V Ineichen
  8. Emily C Leibovitch
  9. Cecil C Yen
  10. Dzung L Pham
  11. Afonso C Silva
  12. Mac Johnson
  13. Steve Jacobson
  14. Pascal Sati
  15. Daniel S Reich
(2023)
In vivo MRI is sensitive to remyelination in a nonhuman primate model of multiple sclerosis
eLife 12:e73786.
https://doi.org/10.7554/eLife.73786

Share this article

https://doi.org/10.7554/eLife.73786

Further reading

    1. Neuroscience
    Samyogita Hardikar, Bronte Mckeown ... Jonathan Smallwood
    Research Article

    Complex macro-scale patterns of brain activity that emerge during periods of wakeful rest provide insight into the organisation of neural function, how these differentiate individuals based on their traits, and the neural basis of different types of self-generated thoughts. Although brain activity during wakeful rest is valuable for understanding important features of human cognition, its unconstrained nature makes it difficult to disentangle neural features related to personality traits from those related to the thoughts occurring at rest. Our study builds on recent perspectives from work on ongoing conscious thought that highlight the interactions between three brain networks – ventral and dorsal attention networks, as well as the default mode network. We combined measures of personality with state-of-the-art indices of ongoing thoughts at rest and brain imaging analysis and explored whether this ‘tri-partite’ view can provide a framework within which to understand the contribution of states and traits to observed patterns of neural activity at rest. To capture macro-scale relationships between different brain systems, we calculated cortical gradients to describe brain organisation in a low-dimensional space. Our analysis established that for more introverted individuals, regions of the ventral attention network were functionally more aligned to regions of the somatomotor system and the default mode network. At the same time, a pattern of detailed self-generated thought was associated with a decoupling of regions of dorsal attention from regions in the default mode network. Our study, therefore, establishes that interactions between attention systems and the default mode network are important influences on ongoing thought at rest and highlights the value of integrating contemporary perspectives on conscious experience when understanding patterns of brain activity at rest.

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.