In vivo MRI is sensitive to remyelination in a nonhuman primate model of multiple sclerosis

  1. Maxime Donadieu
  2. Nathanael J Lee
  3. María I Gaitán
  4. Seung-Kwon Ha
  5. Nicholas J Luciano
  6. Snehashis Roy
  7. Benjamin V Ineichen
  8. Emily C Leibovitch
  9. Cecil C Yen
  10. Dzung L Pham
  11. Afonso C Silva
  12. Mac Johnson
  13. Steve Jacobson
  14. Pascal Sati  Is a corresponding author
  15. Daniel S Reich  Is a corresponding author
  1. National Institute of Neurological Disorders and Stroke, United States
  2. University of Pittsburgh, United States
  3. National Institute of Mental Health, United States
  4. Vertex Phamaceuticals Inc, United States
  5. Cedars-Sinai Medical Center, United States

Abstract

Remyelination is crucial to recover from inflammatory demyelination in multiple sclerosis (MS). Investigating remyelination in vivo using magnetic resonance imaging (MRI) is difficult in MS, where collecting serial short-interval scans is challenging. Using experimental autoimmune encephalomyelitis (EAE) in common marmosets, a model of MS that recapitulates focal cerebral inflammatory demyelinating lesions, we investigated whether MRI is sensitive to, and can characterize, remyelination. In 6 animals followed with multisequence 7-tesla MRI, 31 focal lesions, predicted to be demyelinated or remyelinated based on signal intensity on proton density-weighted images, were subsequently assessed with histopathology. Remyelination occurred in 4 of 6 marmosets and 45% of lesions. Radiological-pathological comparison showed that MRI had high statistical sensitivity (100%) and specificity (90%) for detecting remyelination. This study demonstrates the prevalence of spontaneous remyelination in marmoset EAE and the ability of in vivo MRI to detect it, with implications for preclinical testing of pro-remyelinating agents.

Data availability

All of the 6 marmosets' serial in vivo MRI images, including all the sequences used for analysis and figure generation, were uploaded in an easily accessible format (NIFTI). The file names are titled with the corresponding animal # used in the manuscript, as well as the date of MRI acquisition. All the Iba1 and PLP immunohistochemistry stains have been uploaded as well.

Article and author information

Author details

  1. Maxime Donadieu

    Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  2. Nathanael J Lee

    Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  3. María I Gaitán

    Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  4. Seung-Kwon Ha

    Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  5. Nicholas J Luciano

    Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  6. Snehashis Roy

    Section on Neural Function, National Institute of Mental Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  7. Benjamin V Ineichen

    Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  8. Emily C Leibovitch

    Viral Immunology Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  9. Cecil C Yen

    Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  10. Dzung L Pham

    Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  11. Afonso C Silva

    Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
  12. Mac Johnson

    Vertex Phamaceuticals Inc, Boston, United States
    Competing interests
    Mac Johnson, is a shareholder and employee of Vertex Pharmaceuticals, Inc..
  13. Steve Jacobson

    Viral immunology section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3127-1287
  14. Pascal Sati

    Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, United States
    For correspondence
    Pascal.Sati@cshs.org
    Competing interests
    No competing interests declared.
  15. Daniel S Reich

    Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, United States
    For correspondence
    reichds@ninds.nih.gov
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2628-4334

Funding

National Institutes of Health (Intramural Research Program)

  • Nathanael J Lee

Adelson Family Foundation

  • Maxime Donadieu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeannie Chin, Baylor College of Medicine, United States

Ethics

Animal experimentation: The study was performed under the guideline and in accordance with the National Institutes of Health IACUC. Specifically, the neuroethics committee of the National Institutes of Neurological Diseases and Stroke formally went through our manuscript prior to submission on salient topics including minimization of pain, justification of number of animals and the sex ratio, dosing of methylprednisone based on available human data. All procedures were performed under anesthesia to minimize discomfort and pain. Animals were housed in pairs or triplets to maximize social interactions and well-being. The institutional IACUC protocol number is #1308.

Version history

  1. Received: September 10, 2021
  2. Preprint posted: October 28, 2021 (view preprint)
  3. Accepted: April 12, 2023
  4. Accepted Manuscript published: April 21, 2023 (version 1)
  5. Version of Record published: May 10, 2023 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 996
    Page views
  • 141
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maxime Donadieu
  2. Nathanael J Lee
  3. María I Gaitán
  4. Seung-Kwon Ha
  5. Nicholas J Luciano
  6. Snehashis Roy
  7. Benjamin V Ineichen
  8. Emily C Leibovitch
  9. Cecil C Yen
  10. Dzung L Pham
  11. Afonso C Silva
  12. Mac Johnson
  13. Steve Jacobson
  14. Pascal Sati
  15. Daniel S Reich
(2023)
In vivo MRI is sensitive to remyelination in a nonhuman primate model of multiple sclerosis
eLife 12:e73786.
https://doi.org/10.7554/eLife.73786

Share this article

https://doi.org/10.7554/eLife.73786

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.