Arbidol inhibits human esophageal squamous cell carcinoma growth in vitro and in vivo through suppressing ataxia telangiectasia and Rad3-related protein kinase

  1. Ning Yang
  2. Xuebo Lu
  3. Yanan Jiang
  4. Lili Zhao
  5. Donghao Wang
  6. Yaxing Wei
  7. Yin Yu
  8. Myoung Ok Kim
  9. Kyle Vaughn Laster
  10. Xin Li
  11. Baoyin Yuan
  12. Zigang Dong  Is a corresponding author
  13. Kangdong Liu  Is a corresponding author
  1. Zhengzhou University, China
  2. Kyungpook National University, Republic of Korea
  3. China-US Hormel Cancer Institute, China

Abstract

Human esophageal cancer has a global impact on human health due to its high incidence and mortality. Therefore, there is an urgent need to develop new drugs to treat or prevent the prominent pathological subtype of esophageal cancer, esophageal squamous cell carcinoma. Based upon a screening of drugs approved by the Food and Drug Administration, we discovered that Arbidol could effectively inhibit the proliferation of human esophageal squamous cell carcinoma in vitro. Next, we conducted a series of cell-based assays and found that Arbidol treatment inhibited the proliferation and colony formation ability of ESCC cells and promoted G1 phase cell cycle arrest. Phospho-proteomics experiments, in vitro kinase assays and pull-down assays were subsequently performed in order to identify the underlying growth inhibitory mechanism. We verified Arbidol is a potential ATR inhibitor via binding to ATR kinase to reduce the phosphorylation and activation of MCM2 at Ser108. Finally, we demonstrated Arbidol had the inhibitory effect of ESCC in vivo by a PDX model. All together, Arbidol inhibits the proliferation of ESCC in vitro and in vivo through the DNA replication pathway and is associated with the cell cycle.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository with the dataset identifier PXD034944.

The following data sets were generated

Article and author information

Author details

  1. Ning Yang

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xuebo Lu

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yanan Jiang

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Lili Zhao

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Donghao Wang

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yaxing Wei

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yin Yu

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Myoung Ok Kim

    Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  9. Kyle Vaughn Laster

    China-US Hormel Cancer Institute, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Xin Li

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Baoyin Yuan

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Zigang Dong

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    For correspondence
    dongzg@zzu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  13. Kangdong Liu

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    For correspondence
    kdliu@zzu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4425-5625

Funding

National Natural Science Foundation of China (81872335)

  • Kangdong Liu

National Natural Science Youth Foundatio of China (81902486)

  • Yanan Jiang

Natural Science Foundation of Henan (161100510300)

  • Kangdong Liu

The Central Plains Science and Technology Innovation Leading Talents (224200510015)

  • Kangdong Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Compliance with Ethics RequirementsIn this study, we established an ESCC PDX model. In this model, the tumor sample from an ESCC patient was EG20 (ESCC, male, T2N0M0II, moderately differentiated, obtained from Linzhou Cancer Hospital, Henan Province, China). The patient was fully informed of the study and provided consent. This study was approved by the Ethics Committee of Zhengzhou University (ZZUHCI-2019012).

Copyright

© 2022, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 589
    views
  • 162
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ning Yang
  2. Xuebo Lu
  3. Yanan Jiang
  4. Lili Zhao
  5. Donghao Wang
  6. Yaxing Wei
  7. Yin Yu
  8. Myoung Ok Kim
  9. Kyle Vaughn Laster
  10. Xin Li
  11. Baoyin Yuan
  12. Zigang Dong
  13. Kangdong Liu
(2022)
Arbidol inhibits human esophageal squamous cell carcinoma growth in vitro and in vivo through suppressing ataxia telangiectasia and Rad3-related protein kinase
eLife 11:e73953.
https://doi.org/10.7554/eLife.73953

Share this article

https://doi.org/10.7554/eLife.73953

Further reading

    1. Cancer Biology
    2. Cell Biology
    Zijing Wang, Bihan Xia ... Jilin Yang
    Research Article

    Bestrophin isoform 4 (BEST4) is a newly identified subtype of the calcium-activated chloride channel family. Analysis of colonic epithelial cell diversity by single-cell RNA-sequencing has revealed the existence of a cluster of BEST4+ mature colonocytes in humans. However, if the role of BEST4 is involved in regulating tumour progression remains largely unknown. In this study, we demonstrate that BEST4 overexpression attenuates cell proliferation, colony formation, and mobility in colorectal cancer (CRC) in vitro, and impedes the tumour growth and the liver metastasis in vivo. BEST4 is co-expressed with hairy/enhancer of split 4 (HES4) in the nucleus of cells, and HES4 signals BEST4 by interacting with the upstream region of the BEST4 promoter. BEST4 is epistatic to HES4 and downregulates TWIST1, thereby inhibiting epithelial-to-mesenchymal transition (EMT) in CRC. Conversely, knockout of BEST4 using CRISPR/Cas9 in CRC cells revitalises tumour growth and induces EMT. Furthermore, the low level of the BEST4 mRNA is correlated with advanced and the worse prognosis, suggesting its potential role involving CRC progression.

    1. Cancer Biology
    Bruno Bockorny, Lakshmi Muthuswamy ... Senthil K Muthuswamy
    Tools and Resources

    Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy. Analyzing circulating extracellular vesicles (cEVs) using ‘liquid biopsies’ offers an attractive approach to diagnose and monitor disease status. However, it is important to differentiate EV-associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins were identified per 100 µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12, and RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and validation cohorts. EVs with PSMB4, RUVBL2, and ANKAR were associated with metastasis, and those with CRP, RALB, and CD55 correlated with poor clinical prognosis. Finally, we validated a seven EV protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and improve the outcomes of patients with PDAC.