Arbidol inhibits human esophageal squamous cell carcinoma growth in vitro and in vivo through suppressing ataxia telangiectasia and Rad3-related protein kinase

  1. Ning Yang
  2. Xuebo Lu
  3. Yanan Jiang
  4. Lili Zhao
  5. Donghao Wang
  6. Yaxing Wei
  7. Yin Yu
  8. Myoung Ok Kim
  9. Kyle Vaughn Laster
  10. Xin Li
  11. Baoyin Yuan
  12. Zigang Dong  Is a corresponding author
  13. Kangdong Liu  Is a corresponding author
  1. Zhengzhou University, China
  2. Kyungpook National University, Republic of Korea
  3. China-US Hormel Cancer Institute, China

Abstract

Human esophageal cancer has a global impact on human health due to its high incidence and mortality. Therefore, there is an urgent need to develop new drugs to treat or prevent the prominent pathological subtype of esophageal cancer, esophageal squamous cell carcinoma. Based upon a screening of drugs approved by the Food and Drug Administration, we discovered that Arbidol could effectively inhibit the proliferation of human esophageal squamous cell carcinoma in vitro. Next, we conducted a series of cell-based assays and found that Arbidol treatment inhibited the proliferation and colony formation ability of ESCC cells and promoted G1 phase cell cycle arrest. Phospho-proteomics experiments, in vitro kinase assays and pull-down assays were subsequently performed in order to identify the underlying growth inhibitory mechanism. We verified Arbidol is a potential ATR inhibitor via binding to ATR kinase to reduce the phosphorylation and activation of MCM2 at Ser108. Finally, we demonstrated Arbidol had the inhibitory effect of ESCC in vivo by a PDX model. All together, Arbidol inhibits the proliferation of ESCC in vitro and in vivo through the DNA replication pathway and is associated with the cell cycle.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository with the dataset identifier PXD034944.

The following data sets were generated

Article and author information

Author details

  1. Ning Yang

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xuebo Lu

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yanan Jiang

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Lili Zhao

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Donghao Wang

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yaxing Wei

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yin Yu

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Myoung Ok Kim

    Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  9. Kyle Vaughn Laster

    China-US Hormel Cancer Institute, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Xin Li

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Baoyin Yuan

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Zigang Dong

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    For correspondence
    dongzg@zzu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  13. Kangdong Liu

    Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
    For correspondence
    kdliu@zzu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4425-5625

Funding

National Natural Science Foundation of China (81872335)

  • Kangdong Liu

National Natural Science Youth Foundatio of China (81902486)

  • Yanan Jiang

Natural Science Foundation of Henan (161100510300)

  • Kangdong Liu

The Central Plains Science and Technology Innovation Leading Talents (224200510015)

  • Kangdong Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Compliance with Ethics RequirementsIn this study, we established an ESCC PDX model. In this model, the tumor sample from an ESCC patient was EG20 (ESCC, male, T2N0M0II, moderately differentiated, obtained from Linzhou Cancer Hospital, Henan Province, China). The patient was fully informed of the study and provided consent. This study was approved by the Ethics Committee of Zhengzhou University (ZZUHCI-2019012).

Copyright

© 2022, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 595
    views
  • 162
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ning Yang
  2. Xuebo Lu
  3. Yanan Jiang
  4. Lili Zhao
  5. Donghao Wang
  6. Yaxing Wei
  7. Yin Yu
  8. Myoung Ok Kim
  9. Kyle Vaughn Laster
  10. Xin Li
  11. Baoyin Yuan
  12. Zigang Dong
  13. Kangdong Liu
(2022)
Arbidol inhibits human esophageal squamous cell carcinoma growth in vitro and in vivo through suppressing ataxia telangiectasia and Rad3-related protein kinase
eLife 11:e73953.
https://doi.org/10.7554/eLife.73953

Share this article

https://doi.org/10.7554/eLife.73953

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Sofia V Krasik, Ekaterina A Bryushkova ... Ekaterina O Serebrovskaya
    Research Article

    The current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers. We demonstrated that draining LNs are differentially involved in the interaction with the tumor site, and that significant heterogeneity exists even between different parts of a single lymph node (LN). Next, we confirmed and elaborated upon previous observations regarding intratumoral immunoglobulin heterogeneity. We identified B cell receptor (BCR) clonotypes that were expanded in tumors relative to draining LNs and blood and observed that these tumor-expanded clonotypes were less hypermutated than non-expanded (ubiquitous) clonotypes. Furthermore, we observed a shift in the properties of complementarity-determining region 3 of the BCR heavy chain (CDR-H3) towards less mature and less specific BCR repertoire in tumor-infiltrating B-cells compared to circulating B-cells, which may indicate less stringent control for antibody-producing B cell development in tumor microenvironment (TME). In addition, we found repertoire-level evidence that B-cells may be selected according to their CDR-H3 physicochemical properties before they activate somatic hypermutation (SHM). Altogether, our work outlines a broad picture of the differences in the tumor BCR repertoire relative to non-tumor tissues and points to the unexpected features of the SHM process.

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.