Pervasive translation in Mycobacterium tuberculosis

  1. Carol Smith
  2. Jill G Canestrari
  3. Archer J Wang
  4. Matthew M Champion
  5. Keith M Derbyshire  Is a corresponding author
  6. Todd A Gray  Is a corresponding author
  7. Joseph T Wade  Is a corresponding author
  1. New York State Department of Health, United States
  2. University of Notre Dame, United States

Abstract

Most bacterial ORFs are identified by automated prediction algorithms. However, these algorithms often fail to identify ORFs lacking canonical features such as a length of >50 codons or the presence of an upstream Shine-Dalgarno sequence. Here, we use ribosome profiling approaches to identify actively translated ORFs in Mycobacterium tuberculosis. Most of the ORFs we identify have not been previously described, indicating that the M. tuberculosis transcriptome is pervasively translated. The newly described ORFs are predominantly short, with many encoding proteins of ≤50 amino acids. Codon usage of the newly discovered ORFs suggests that most have not been subject to purifying selection, and hence are unlikely to contribute to cell fitness. Nevertheless, we identify 90 new ORFs (median length of 52 codons) that bear the hallmarks of purifying selection. Thus, our data suggest that pervasive translation of short ORFs in Mycobacterium tuberculosis serves as a rich source for the evolution of new functional proteins.

Data availability

Raw Illumina sequencing data are available from the ArrayExpress and European Nucleotide Archive repositories with accession numbers E-MTAB-8039 and E-MTAB-10695. Raw mass spectrometry data are available through MassIVE, with exchange #MSV000087541. Reviewers can access the raw mass spectrometry data at ftp://MSV000087541@massive.ucsd.edu, password: sproteinTBPython code is available at https://github.com/wade-lab/Mtb_Ribo-RET.

The following data sets were generated

Article and author information

Author details

  1. Carol Smith

    Wadsworth Center, Division of Genetics, New York State Department of Health, Albany, United States
    Competing interests
    No competing interests declared.
  2. Jill G Canestrari

    Wadsworth Center, Division of Genetics, New York State Department of Health, Albany, United States
    Competing interests
    No competing interests declared.
  3. Archer J Wang

    Wadsworth Center, Division of Genetics, New York State Department of Health, Albany, United States
    Competing interests
    No competing interests declared.
  4. Matthew M Champion

    Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, United States
    Competing interests
    No competing interests declared.
  5. Keith M Derbyshire

    Wadsworth Center, Division of Genetics, New York State Department of Health, Albany, United States
    For correspondence
    keith.derbyshire@health.ny.gov
    Competing interests
    No competing interests declared.
  6. Todd A Gray

    Wadsworth Center, Division of Genetics, New York State Department of Health, Albany, United States
    For correspondence
    todd.gray@health.ny.gov
    Competing interests
    No competing interests declared.
  7. Joseph T Wade

    Wadsworth Center, Division of Genetics, New York State Department of Health, Albany, United States
    For correspondence
    joseph.wade@gmail.com
    Competing interests
    Joseph T Wade, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9779-3160

Funding

National Institute of Allergy and Infectious Diseases (R21AI117158)

  • Keith M Derbyshire
  • Todd A Gray
  • Joseph T Wade

National Institute of Allergy and Infectious Diseases (R21AI119427)

  • Keith M Derbyshire
  • Todd A Gray
  • Joseph T Wade

National Institute of General Medical Sciences (R01GM139277)

  • Matthew M Champion
  • Keith M Derbyshire
  • Todd A Gray
  • Joseph T Wade

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Version history

  1. Preprint posted: June 10, 2019 (view preprint)
  2. Received: September 17, 2021
  3. Accepted: March 25, 2022
  4. Accepted Manuscript published: March 28, 2022 (version 1)
  5. Version of Record published: May 11, 2022 (version 2)
  6. Version of Record updated: May 23, 2022 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,360
    views
  • 431
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carol Smith
  2. Jill G Canestrari
  3. Archer J Wang
  4. Matthew M Champion
  5. Keith M Derbyshire
  6. Todd A Gray
  7. Joseph T Wade
(2022)
Pervasive translation in Mycobacterium tuberculosis
eLife 11:e73980.
https://doi.org/10.7554/eLife.73980

Share this article

https://doi.org/10.7554/eLife.73980

Further reading

    1. Microbiology and Infectious Disease
    Moagi Tube Shaku, Peter K Um ... Bavesh D Kana
    Research Article

    Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan side-chains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan side-chains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics, altered spatial localization of new peptidoglycan and increased NOD-1 expression in macrophages. In cell culture experiments, training of a human monocyte cell line with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, which is expected to unmask the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. In vitro and in vivo experiments in this study demonstrate the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.

    1. Microbiology and Infectious Disease
    Ryan Thiermann, Michael Sandler ... Suckjoon Jun
    Tools and Resources

    Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning-based segmentation, ‘what you put is what you get’ (WYPIWYG) – that is, pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother machine-based high-throughput imaging and analysis methods in their research.