In vivo generation of bone marrow from embryonic stem cells in interspecies chimeras

Abstract

Generation of bone marrow (BM) from embryonic stem cells (ESCs) promises to accelerate the development of future cell therapies for life-threatening disorders. However, such approach is limited by technical challenges to produce a mixture of functional BM progenitor cells able to replace all hematopoietic cell lineages. Herein, we used blastocyst complementation to simultaneously produce BM cell lineages from mouse ESCs in a rat. Based on FACS analysis and single-cell RNA sequencing, mouse ESCs differentiated into multiple hematopoietic and stromal cell types that were indistinguishable from normal mouse BM cells based on gene expression signatures and cell surface markers. Receptor-ligand interactions identified Cxcl12-Cxcr4, Lama2-Itga6, App-Itga6, Comp-Cd47, Col1a1-Cd44 and App-Il18rap as major signaling pathways between hematopoietic progenitors and stromal cells. Multiple hematopoietic progenitors, including hematopoietic stem cells (HSCs) in mouse-rat chimeras derived more efficiently from mouse ESCs, whereas chondrocytes predominantly derived from rat cells. In the dorsal aorta and fetal liver of mouse-rat chimeras, mouse HSCs emerged and expanded faster compared to endogenous rat cells. Sequential BM transplantation of ESC-derived cells from mouse-rat chimeras rescued lethally-irradiated syngeneic mice and demonstrated long-term reconstitution potential of donor HSCs. Altogether, a fully functional bone marrow was generated from mouse ESCs using rat embryos as 'bioreactors'.

Data availability

Bone marrow single cell RNA sequencing data have been deposited in GEO under accession number GSE184940.

The following data sets were generated

Article and author information

Author details

  1. Bingqiang Wen

    Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Guolun Wang

    Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Enhong Li

    Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Olena A Kolesnichenko

    Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhaowei Tu

    Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Senad Divanovic

    Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7538-0499
  7. Tanya V Kalin

    Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Vladimir V Kalinichenko

    Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    For correspondence
    Vladimir.Kalinichenko@cchmc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3438-2660

Funding

National Heart, Lung, and Blood Institute (HL141174)

  • Vladimir V Kalinichenko

National Heart, Lung, and Blood Institute (HL149631)

  • Vladimir V Kalinichenko

National Heart, Lung, and Blood Institute (HL152973)

  • Vladimir V Kalinichenko

National Heart, Lung, and Blood Institute (HL158659)

  • Tanya V Kalin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jalees Rehman, University of Illinois at Chicago, United States

Ethics

Animal experimentation: All animal studies were reviewed and approved by the Institutional Animal Care and Use Committee of the Cincinnati Children's Research Foundation (protocol # IACUC2016-0038).

Version history

  1. Received: September 18, 2021
  2. Preprint posted: October 1, 2021 (view preprint)
  3. Accepted: September 29, 2022
  4. Accepted Manuscript published: September 30, 2022 (version 1)
  5. Version of Record published: October 18, 2022 (version 2)

Copyright

© 2022, Wen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,329
    views
  • 370
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bingqiang Wen
  2. Guolun Wang
  3. Enhong Li
  4. Olena A Kolesnichenko
  5. Zhaowei Tu
  6. Senad Divanovic
  7. Tanya V Kalin
  8. Vladimir V Kalinichenko
(2022)
In vivo generation of bone marrow from embryonic stem cells in interspecies chimeras
eLife 11:e74018.
https://doi.org/10.7554/eLife.74018

Share this article

https://doi.org/10.7554/eLife.74018

Further reading

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Junjun Yao, Shaoxing Dai ... Tianqing Li
    Research Article

    While accumulated publications support the existence of neurogenesis in the adult human hippocampus, the homeostasis and developmental potentials of neural stem cells (NSCs) under different contexts remain unclear. Based on our generated single-nucleus atlas of the human hippocampus across neonatal, adult, aging, and injury, we dissected the molecular heterogeneity and transcriptional dynamics of human hippocampal NSCs under different contexts. We further identified new specific neurogenic lineage markers that overcome the lack of specificity found in some well-known markers. Based on developmental trajectory and molecular signatures, we found that a subset of NSCs exhibit quiescent properties after birth, and most NSCs become deep quiescence during aging. Furthermore, certain deep quiescent NSCs are reactivated following stroke injury. Together, our findings provide valuable insights into the development, aging, and reactivation of the human hippocampal NSCs, and help to explain why adult hippocampal neurogenesis is infrequently observed in humans.

    1. Stem Cells and Regenerative Medicine
    Magali Seguret, Patricia Davidson ... Jean-Sébastien Hulot
    Research Article

    We developed a 96-well plate assay which allows fast, reproducible, and high-throughput generation of 3D cardiac rings around a deformable optically transparent hydrogel (polyethylene glycol [PEG]) pillar of known stiffness. Human induced pluripotent stem cell-derived cardiomyocytes, mixed with normal human adult dermal fibroblasts in an optimized 3:1 ratio, self-organized to form ring-shaped cardiac constructs. Immunostaining showed that the fibroblasts form a basal layer in contact with the glass, stabilizing the muscular fiber above. Tissues started contracting around the pillar at D1 and their fractional shortening increased until D7, reaching a plateau at 25±1%, that was maintained up to 14 days. The average stress, calculated from the compaction of the central pillar during contractions, was 1.4±0.4 mN/mm2. The cardiac constructs recapitulated expected inotropic responses to calcium and various drugs (isoproterenol, verapamil) as well as the arrhythmogenic effects of dofetilide. This versatile high-throughput assay allows multiple in situ mechanical and structural readouts.