The transcription factor Xrp1 is required for PERK-mediated antioxidant gene induction in Drosophila

  1. Brian Brown
  2. Sahana Mitra
  3. Finnegan D Roach
  4. Deepika Vasudevan
  5. Hyung Don Ryoo  Is a corresponding author
  1. NYU Grossman School of Medicine, United States

Abstract

PERK is an endoplasmic reticulum (ER) transmembrane sensor that phosphorylates eIF2a to initiate the Unfolded Protein Response (UPR). eIF2a phosphorylation promotes stress-responsive gene expression most notably through the transcription factor ATF4 that contains a regulatory 5' leader. Possible PERK effectors other than ATF4 remain poorly understood. Here, we report that the bZIP transcription factor Xrp1 is required for ATF4-independent PERK signaling. Cell type-specific gene expression profiling in Drosophila indicated that delta-family glutathione-S-transferases (gstD) are prominently induced by the UPR-activating transgene Rh1G69D. Perk was necessary and sufficient for such gstD induction, but ATF4 was not required. Instead, Perk and other regulators of eIF2a phosphorylation regulated Xrp1 protein levels to induce gstDs. The Xrp1 5' leader has a conserved upstream Open Reading Frame (uORF) analogous to those that regulate ATF4 translation. The gstD-GFP reporter induction required putative Xrp1 binding sites. These results indicate that antioxidant genes are highly induced by a previously unrecognized UPR signaling axis consisting of PERK and Xrp1.

Data availability

Sequencing data have been deposited in GEO under the accession code GSE150058. Source Data files have been provided for Figures 2-6 and 8.

The following data sets were generated

Article and author information

Author details

  1. Brian Brown

    NYU Grossman School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9826-4052
  2. Sahana Mitra

    NYU Grossman School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Finnegan D Roach

    NYU Grossman School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Deepika Vasudevan

    NYU Grossman School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hyung Don Ryoo

    NYU Grossman School of Medicine, New York, United States
    For correspondence
    hyungdon.ryoo@nyumc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1046-535X

Funding

National Eye Institute (R01 EY020866)

  • Hyung Don Ryoo

National Institute of General Medical Sciences (R01 GM125954)

  • Hyung Don Ryoo

National Institute of General Medical Sciences (T32 GM136573)

  • Brian Brown

Eunice Kennedy Shriver National Institute of Child Health and Human Development (T32 HD007520)

  • Brian Brown

National Eye Institute (K99 EY029013)

  • Deepika Vasudevan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Brown et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,309
    views
  • 398
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian Brown
  2. Sahana Mitra
  3. Finnegan D Roach
  4. Deepika Vasudevan
  5. Hyung Don Ryoo
(2021)
The transcription factor Xrp1 is required for PERK-mediated antioxidant gene induction in Drosophila
eLife 10:e74047.
https://doi.org/10.7554/eLife.74047

Share this article

https://doi.org/10.7554/eLife.74047

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Subhradip Das, Sushmitha Hegde ... Girish S Ratnaparkhi
    Research Article

    Repurposing of pleiotropic factors during execution of diverse cellular processes has emerged as a regulatory paradigm. Embryonic development in metazoans is controlled by maternal factors deposited in the egg during oogenesis. Here, we explore maternal role(s) of Caspar (Casp), the Drosophila orthologue of human Fas-associated factor-1 (FAF1) originally implicated in host-defense as a negative regulator of NF-κB signaling. Maternal loss of either Casp or it’s protein partner, transitional endoplasmic reticulum 94 (TER94) leads to partial embryonic lethality correlated with aberrant centrosome behavior, cytoskeletal abnormalities, and defective gastrulation. Although ubiquitously distributed, both proteins are enriched in the primordial germ cells (PGCs), and in keeping with the centrosome problems, mutant embryos display a significant reduction in the PGC count. Moreover, the total number of pole buds is directly proportional to the level of Casp. Consistently, it’s ‘loss’ and ‘gain’ results in respective reduction and increase in the Oskar protein levels, the master determinant of PGC fate. To elucidate this regulatory loop, we analyzed several known components of mid-blastula transition and identify the translational repressor Smaug, a zygotic regulator of germ cell specification, as a potential critical target. We present a detailed structure-function analysis of Casp aimed at understanding its novel involvement during PGC development.

    1. Genetics and Genomics
    Shek Man Chim, Kristen Howell ... Regeneron Genetics Center
    Research Article

    Recent studies have revealed a role for zinc in insulin secretion and glucose homeostasis. Randomized placebo-controlled zinc supplementation trials have demonstrated improved glycemic traits in patients with type II diabetes (T2D). Moreover, rare loss-of-function variants in the zinc efflux transporter SLC30A8 reduce T2D risk. Despite this accumulated evidence, a mechanistic understanding of how zinc influences systemic glucose homeostasis and consequently T2D risk remains unclear. To further explore the relationship between zinc and metabolic traits, we searched the exome database of the Regeneron Genetics Center-Geisinger Health System DiscovEHR cohort for genes that regulate zinc levels and associate with changes in metabolic traits. We then explored our main finding using in vitro and in vivo models. We identified rare loss-of-function (LOF) variants (MAF <1%) in Solute Carrier Family 39, Member 5 (SLC39A5) associated with increased circulating zinc (p=4.9 × 10-4). Trans-ancestry meta-analysis across four studies exhibited a nominal association of SLC39A5 LOF variants with decreased T2D risk. To explore the mechanisms underlying these associations, we generated mice lacking Slc39a5. Slc39a5-/- mice display improved liver function and reduced hyperglycemia when challenged with congenital or diet-induced obesity. These improvements result from elevated hepatic zinc levels and concomitant activation of hepatic AMPK and AKT signaling, in part due to zinc-mediated inhibition of hepatic protein phosphatase activity. Furthermore, under conditions of diet-induced non-alcoholic steatohepatitis (NASH), Slc39a5-/- mice display significantly attenuated fibrosis and inflammation. Taken together, these results suggest SLC39A5 as a potential therapeutic target for non-alcoholic fatty liver disease (NAFLD) due to metabolic derangements including T2D.