The transcription factor Xrp1 is required for PERK-mediated antioxidant gene induction in Drosophila

  1. Brian Brown
  2. Sahana Mitra
  3. Finnegan D Roach
  4. Deepika Vasudevan
  5. Hyung Don Ryoo  Is a corresponding author
  1. NYU Grossman School of Medicine, United States

Abstract

PERK is an endoplasmic reticulum (ER) transmembrane sensor that phosphorylates eIF2a to initiate the Unfolded Protein Response (UPR). eIF2a phosphorylation promotes stress-responsive gene expression most notably through the transcription factor ATF4 that contains a regulatory 5' leader. Possible PERK effectors other than ATF4 remain poorly understood. Here, we report that the bZIP transcription factor Xrp1 is required for ATF4-independent PERK signaling. Cell type-specific gene expression profiling in Drosophila indicated that delta-family glutathione-S-transferases (gstD) are prominently induced by the UPR-activating transgene Rh1G69D. Perk was necessary and sufficient for such gstD induction, but ATF4 was not required. Instead, Perk and other regulators of eIF2a phosphorylation regulated Xrp1 protein levels to induce gstDs. The Xrp1 5' leader has a conserved upstream Open Reading Frame (uORF) analogous to those that regulate ATF4 translation. The gstD-GFP reporter induction required putative Xrp1 binding sites. These results indicate that antioxidant genes are highly induced by a previously unrecognized UPR signaling axis consisting of PERK and Xrp1.

Data availability

Sequencing data have been deposited in GEO under the accession code GSE150058. Source Data files have been provided for Figures 2-6 and 8.

The following data sets were generated

Article and author information

Author details

  1. Brian Brown

    NYU Grossman School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9826-4052
  2. Sahana Mitra

    NYU Grossman School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Finnegan D Roach

    NYU Grossman School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Deepika Vasudevan

    NYU Grossman School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hyung Don Ryoo

    NYU Grossman School of Medicine, New York, United States
    For correspondence
    hyungdon.ryoo@nyumc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1046-535X

Funding

National Eye Institute (R01 EY020866)

  • Hyung Don Ryoo

National Institute of General Medical Sciences (R01 GM125954)

  • Hyung Don Ryoo

National Institute of General Medical Sciences (T32 GM136573)

  • Brian Brown

Eunice Kennedy Shriver National Institute of Child Health and Human Development (T32 HD007520)

  • Brian Brown

National Eye Institute (K99 EY029013)

  • Deepika Vasudevan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Brown et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,519
    views
  • 413
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian Brown
  2. Sahana Mitra
  3. Finnegan D Roach
  4. Deepika Vasudevan
  5. Hyung Don Ryoo
(2021)
The transcription factor Xrp1 is required for PERK-mediated antioxidant gene induction in Drosophila
eLife 10:e74047.
https://doi.org/10.7554/eLife.74047

Share this article

https://doi.org/10.7554/eLife.74047

Further reading

    1. Genetics and Genomics
    Minsoo Noh, Xiangguo Che ... Sihoon Lee
    Research Article

    Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1–84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1–34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1–34) induced acute calcemic and phosphaturic responses comparable to PTH(1–34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1–34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.

    1. Developmental Biology
    2. Genetics and Genomics
    Menglei Yang, Hafiz Muhammad Jafar Hussain ... Baolu Shi
    Research Article

    Asthenoteratozoospermia, a prevalent cause of male infertility, lacks a well-defined etiology. DNAH12 is a special dynein featured by the absence of a microtubule-binding domain, however, its functions in spermatogenesis remain largely unknown. Through comprehensive genetic analyses involving whole-exome sequencing and subsequent Sanger sequencing on infertile patients and fertile controls from six distinct families, we unveiled six biallelic mutations in DNAH12 that co-segregate recessively with male infertility in the studied families. Transmission electron microscopy (TEM) revealed pronounced axonemal abnormalities, including inner dynein arms (IDAs) impairment and central pair (CP) loss in sperm flagella of the patients. Mouse models (Dnah12-/- and Dnah12mut/mut) were generated and recapitulated the reproductive defects in the patients. Noteworthy, DNAH12 deficiency did not show effects on cilium organization and function. Mechanistically, DNAH12 was confirmed to interact with two other IDA components DNALI1 and DNAH1, while disruption of DNAH12 leads to failed recruitment of DNALI1 and DNAH1 to IDAs and compromised sperm development. Furthermore, DNAH12 also interacts with radial spoke head proteins RSPH1, RSPH9, and DNAJB13 to regulate CP stability. Moreover, the infertility of Dnah12-/- mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. Collectively, DNAH12 plays a crucial role in the proper organization of axoneme in sperm flagella, but not cilia, by recruiting DNAH1 and DNALI1 in both humans and mice. These findings expand our comprehension of dynein component assembly in flagella and cilia and provide a valuable marker for genetic counseling and diagnosis of asthenoteratozoospermia in clinical practice.