Tropical land use alters functional diversity of soil food webs and leads to monopolization of the detrital energy channel

  1. Peter Dietrich  Is a corresponding author
  2. Jens Schumacher
  3. Nico Eisenhauer
  4. Christiane Roscher
  1. Helmholtz Centre for Environmental Research, Germany
  2. Friedrich Schiller University Jena, Germany
  3. German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig,, Germany

Abstract

Agricultural expansion is among the main threats to biodiversity and functions of tropical ecosystems. It has been shown that conversion of rainforest into plantations erodes biodiversity, but further consequences for food-web structure and energetics of belowground communities remains little explored. We used a unique combination of stable isotope analysis and food web energetics to analyze in a comprehensive way consequences of the conversion of rainforest into oil palm and rubber plantations on the structure of and channeling of energy through soil animal food webs in Sumatra, Indonesia. Across the 23 animal groups studied, most of the taxa switched to freshly-fixed plant carbon (low Δ13C values) indicating 'fast' energy channeling in plantations as opposed to 'slow' energy channeling through the detrital pathway in rainforests (high Δ13C values). These shifts led to changes in isotopic divergence, dispersion, evenness and uniqueness. However, earthworms as major detritivores stayed unchanged in their trophic niche and monopolized the detrital pathway in plantations, resulting in similar energetic metrics across land-use systems. Functional diversity metrics of soil food webs were associated with reduced amount of litter, tree density and species richness in plantations, providing guidelines how to improve the complexity of the structure of and channeling of energy through soil food webs. Our results highlight the strong restructuring of soil food webs with the conversion of rainforest into plantations threatening soil functioning and ecosystem stability in the long term.

Data availability

The data reported in this paper have been deposited in Dryad, whichcan be publicly accessed at https://doi.org/10.5061/dryad.gmsbcc2p7

The following data sets were generated

Article and author information

Author details

  1. Peter Dietrich

    Department of Physiological Diversity, Helmholtz Centre for Environmental Research, Leipzig, Germany
    For correspondence
    peter.dietrich@idiv.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7742-6064
  2. Jens Schumacher

    Institute of Mathematics, Friedrich Schiller University Jena, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Nico Eisenhauer

    Experimental Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig,, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0371-6720
  4. Christiane Roscher

    Department of Physiological Diversity, Helmholtz Centre for Environmental Research, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (FOR 1451; FOR 5000; FZT 118)

  • Nico Eisenhauer
  • Christiane Roscher

Heinrich Böll Stiftung (Ph.D. scholarship)

  • Peter Dietrich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Dietrich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,073
    views
  • 200
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter Dietrich
  2. Jens Schumacher
  3. Nico Eisenhauer
  4. Christiane Roscher
(2022)
Tropical land use alters functional diversity of soil food webs and leads to monopolization of the detrital energy channel
eLife 11:e74054.
https://doi.org/10.7554/eLife.74054

Share this article

https://doi.org/10.7554/eLife.74054

Further reading

    1. Ecology
    Ming-Qiang Wang, Shi-Kun Guo ... Chao-Dong Zhu
    Research Article

    Environmental factors can influence ecological networks, but these effects are poorly understood in the realm of the phylogeny of host-parasitoid interactions. Especially, we lack a comprehensive understanding of the ways that biotic factors, including plant species richness, overall community phylogenetic and functional composition of consumers, and abiotic factors such as microclimate, determine host-parasitoid network structure and host-parasitoid community dynamics. To address this, we leveraged a 5-year dataset of trap-nesting bees and wasps and their parasitoids collected in a highly controlled, large-scale subtropical tree biodiversity experiment. We tested for effects of tree species richness, tree phylogenetic, and functional diversity, and species and phylogenetic composition on species and phylogenetic diversity of both host and parasitoid communities and the composition of their interaction networks. We show that multiple components of tree diversity and canopy cover impacted both, species and phylogenetic composition of hosts and parasitoids. Generally, phylogenetic associations between hosts and parasitoids reflected nonrandomly structured interactions between phylogenetic trees of hosts and parasitoids. Further, host-parasitoid network structure was influenced by tree species richness, tree phylogenetic diversity, and canopy cover. Our study indicates that the composition of higher trophic levels and corresponding interaction networks are determined by plant diversity and canopy cover, especially via trophic links in species-rich ecosystems.

    1. Ecology
    Itai Bloch, David Troupin ... Nir Sapir
    Research Article

    Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts (Apus affinis) in response to insect movements over Israel’s Hula Valley. Insect movement traffic rate (MoTR) substantially varied across days, strongly influencing swift movement. On days with high MoTR, swifts exhibited reduced flight distance, increased colony visit rate, and earlier arrivals at the breeding colony, reflecting a dynamic response to prey availability. However, no significant effects were observed in total foraging duration, flight speed, or daily route length. Notably, as insect abundance increased, inter-individual distances decreased. These findings suggest that Little Swifts optimize their foraging behavior in relation to aerial insect abundance, likely influencing reproductive success and population dynamics. The integration of radar technology and biotelemetry systems provides a unique perspective on the interactions between aerial insectivores and their prey, contributing to a comprehensive understanding of optimal foraging strategies in diverse environments.