Eco-evolutionary dynamics modulate plant responses to global change depending on plant diversity and species identity

  1. Peter Dietrich  Is a corresponding author
  2. Jens Schumacher
  3. Nico Eisenhauer
  4. Christiane Roscher
  1. Helmholtz Centre for Environmental Research, Germany
  2. Friedrich Schiller University Jena, Germany
  3. German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig,, Germany

Abstract

Global change has dramatic impacts on grassland diversity. However, little is known about how fast species can adapt to diversity loss and how this affects their responses to global change. Here, we performed a common garden experiment testing whether plant responses to global change are influenced by their selection history and the conditioning history of soil at different plant diversity levels. Using seeds of four grass species and soil samples from a 14-year old biodiversity experiment, we grew the offspring of the plants either in their own soil or in soil of a different community, and exposed them either to drought, increased nitrogen input, or a combination of both. Under nitrogen addition, offspring of plants selected at high diversity produced more biomass than those selected at low diversity, while drought neutralized differences in biomass production. Moreover, under the influence of global change drivers, soil history, and to a lesser extent plant history, had species-specific effects on trait expression. Our results show that plant diversity modulates plant-soil interactions and growth strategies of plants, which in turn affects plant eco-evolutionary pathways. How this change affects species' response to global change and whether this can cause a feedback loop should be investigated in more detail in future studies.

Data availability

The data reported in this paper have been deposited in Dryad, whichcan be publicly accessed at https://doi.org/10.5061/dryad.gmsbcc2p7

The following data sets were generated

Article and author information

Author details

  1. Peter Dietrich

    Department of Physiological Diversity, Helmholtz Centre for Environmental Research, Leipzig, Germany
    For correspondence
    peter.dietrich@idiv.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7742-6064
  2. Jens Schumacher

    Institute of Mathematics, Friedrich Schiller University Jena, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Nico Eisenhauer

    Experimental Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig,, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0371-6720
  4. Christiane Roscher

    Department of Physiological Diversity, Helmholtz Centre for Environmental Research, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (FOR 1451; FOR 5000; FZT 118)

  • Nico Eisenhauer
  • Christiane Roscher

Heinrich Böll Stiftung (Ph.D. scholarship)

  • Peter Dietrich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Dietrich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,022
    views
  • 187
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter Dietrich
  2. Jens Schumacher
  3. Nico Eisenhauer
  4. Christiane Roscher
(2022)
Eco-evolutionary dynamics modulate plant responses to global change depending on plant diversity and species identity
eLife 11:e74054.
https://doi.org/10.7554/eLife.74054

Share this article

https://doi.org/10.7554/eLife.74054

Further reading

    1. Ecology
    Chao Wen, Yuyi Lu ... Lars Chittka
    Research Article

    Bumblebees (Bombus terrestris) have been shown to engage in string-pulling behavior to access rewards. The objective of this study was to elucidate whether bumblebees display means-end comprehension in a string-pulling task. We presented bumblebees with two options: one where a string was connected to an artificial flower containing a reward and the other presenting an interrupted string. Bumblebees displayed a consistent preference for pulling connected strings over interrupted ones after training with a stepwise pulling technique. When exposed to novel string colors, bees continued to exhibit a bias towards pulling the connected string. This suggests that bumblebees engage in featural generalization of the visual display of the string connected to the flower in this task. If the view of the string connected to the flower was restricted during the training phase, the proportion of bumblebees choosing the connected strings significantly decreased. Similarly, when the bumblebees were confronted with coiled connected strings during the testing phase, they failed to identify and reject the interrupted strings. This finding underscores the significance of visual consistency in enabling the bumblebees to perform the task successfully. Our results suggest that bumblebees’ ability to distinguish between continuous strings and interrupted strings relies on a combination of image matching and associative learning, rather than means-end understanding. These insights contribute to a deeper understanding of the cognitive processes employed by bumblebees when tackling complex spatial tasks.

    1. Ecology
    Mathilde Delacoux, Fumihiro Kano
    Research Article

    During collective vigilance, it is commonly assumed that individual animals compromise their feeding time to be vigilant against predators, benefiting the entire group. One notable issue with this assumption concerns the unclear nature of predator ‘detection’, particularly in terms of vision. It remains uncertain how a vigilant individual utilizes its high-acuity vision (such as the fovea) to detect a predator cue and subsequently guide individual and collective escape responses. Using fine-scale motion-capture technologies, we tracked the head and body orientations of pigeons (hence reconstructed their visual fields and foveal projections) foraging in a flock during simulated predator attacks. Pigeons used their fovea to inspect predator cues. Earlier foveation on a predator cue was linked to preceding behaviors related to vigilance and feeding, such as head-up or down positions, head-scanning, and food-pecking. Moreover, earlier foveation predicted earlier evasion flights at both the individual and collective levels. However, we also found that relatively long delay between their foveation and escape responses in individuals obscured the relationship between these two responses. While our results largely support the existing assumptions about vigilance, they also underscore the importance of considering vision and addressing the disparity between detection and escape responses in future research.