Eco-evolutionary dynamics modulate plant responses to global change depending on plant diversity and species identity
Abstract
Global change has dramatic impacts on grassland diversity. However, little is known about how fast species can adapt to diversity loss and how this affects their responses to global change. Here, we performed a common garden experiment testing whether plant responses to global change are influenced by their selection history and the conditioning history of soil at different plant diversity levels. Using seeds of four grass species and soil samples from a 14-year old biodiversity experiment, we grew the offspring of the plants either in their own soil or in soil of a different community, and exposed them either to drought, increased nitrogen input, or a combination of both. Under nitrogen addition, offspring of plants selected at high diversity produced more biomass than those selected at low diversity, while drought neutralized differences in biomass production. Moreover, under the influence of global change drivers, soil history, and to a lesser extent plant history, had species-specific effects on trait expression. Our results show that plant diversity modulates plant-soil interactions and growth strategies of plants, which in turn affects plant eco-evolutionary pathways. How this change affects species' response to global change and whether this can cause a feedback loop should be investigated in more detail in future studies.
Data availability
The data reported in this paper have been deposited in Dryad, whichcan be publicly accessed at https://doi.org/10.5061/dryad.gmsbcc2p7
-
Eco-evolutionary feedbacks modulate plant responses to global change depending on plant diversity and species identityDryad Digital Repository, doi:10.5061/dryad.gmsbcc2p7.
Article and author information
Author details
Funding
Deutsche Forschungsgemeinschaft (FOR 1451; FOR 5000; FZT 118)
- Nico Eisenhauer
- Christiane Roscher
Heinrich Böll Stiftung (Ph.D. scholarship)
- Peter Dietrich
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Dietrich et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,090
- views
-
- 202
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.