microRNA-138 controls hippocampal interneuron function and short-term memory in mice

Abstract

The proper development and function of neuronal circuits relies on a tightly regulated balance between excitatory and inhibitory (E/I) synaptic transmission, and disrupting this balance can cause neurodevelopmental disorders, e.g. schizophrenia. microRNA-dependent gene regulation in pyramidal neurons is important for excitatory synaptic function and cognition, but its role in inhibitory interneurons is poorly understood. Here, we identify miR138-5p as a regulator of short-term memory and inhibitory synaptic transmission in the mouse hippocampus. Sponge-mediated miR138-5p inactivation specifically in mouse parvalbumin (PV)-expressing interneurons impairs spatial recognition memory and enhances GABAergic synaptic input onto pyramidal neurons. Cellular and behavioural phenotypes associated with miR138-5p inactivation are paralleled by an upregulation of the schizophrenia-associated Erbb4, which we validated as a direct miR138-5p target gene. Our findings suggest that miR138-5p is a critical regulator of PV interneuron function in mice, with implications for cognition and schizophrenia. More generally, they provide evidence that microRNAs orchestrate neural circuit development by fine-tuning both excitatory and inhibitory synaptic transmission.

Data availability

RNA-seq data has been deposited to GEO (accession no. GSE173982

The following data sets were generated

Article and author information

Author details

  1. Reetu Daswani

    Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Carlotta Gilardi

    Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Soutschek

    Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8472-8124
  4. Pakruti Nanda

    Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Kerstin Weiss

    Institute for Physiological Chemistry, Philipp University of Marburg, Marberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Silvia Bicker

    Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6276-5653
  7. Roberto Fiore

    Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Christoph Dieterich

    Department of Internal Medicine III, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9468-6311
  9. Pierre-Luc Germain

    Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3418-4218
  10. Jochen Winterer

    Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
    For correspondence
    jochen.winterer@hest.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6800-6594
  11. Gerhard Schratt

    Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
    For correspondence
    gerhard.schratt@hest.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7527-2025

Funding

Deutsche Forschungsgemeinschaft (SCHR 1136/4-2)

  • Gerhard Schratt

Eidgenössische Technische Hochschule Zürich (24 18-2 (NeuroSno))

  • Gerhard Schratt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were conducted in strict accordance with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals and the relevant local or national rules and regulations of Switzerland and were subject to prior authorization by the local cantonal authorities (ZH017/2018, ZH196/17).

Copyright

© 2022, Daswani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,586
    views
  • 261
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Reetu Daswani
  2. Carlotta Gilardi
  3. Michael Soutschek
  4. Pakruti Nanda
  5. Kerstin Weiss
  6. Silvia Bicker
  7. Roberto Fiore
  8. Christoph Dieterich
  9. Pierre-Luc Germain
  10. Jochen Winterer
  11. Gerhard Schratt
(2022)
microRNA-138 controls hippocampal interneuron function and short-term memory in mice
eLife 11:e74056.
https://doi.org/10.7554/eLife.74056

Share this article

https://doi.org/10.7554/eLife.74056

Further reading

    1. Neuroscience
    Yisi Liu, Pu Wang ... Hongwei Zhou
    Short Report

    The increasing use of tissue clearing techniques underscores the urgent need for cost-effective and simplified deep imaging methods. While traditional inverted confocal microscopes excel in high-resolution imaging of tissue sections and cultured cells, they face limitations in deep imaging of cleared tissues due to refractive index mismatches between the immersion media of objectives and sample container. To overcome these challenges, the RIM-Deep was developed to significantly improve deep imaging capabilities without compromising the normal function of the confocal microscope. This system facilitates deep immunofluorescence imaging of the prefrontal cortex in cleared macaque tissue, extending imaging depth from 2 mm to 5 mm. Applied to an intact and cleared Thy1-EGFP mouse brain, the system allowed for clear axonal visualization at high imaging depth. Moreover, this advancement enables large-scale, deep 3D imaging of intact tissues. In principle, this concept can be extended to any imaging modality, including existing inverted wide-field, confocal, and two-photon microscopy. This would significantly upgrade traditional laboratory configurations and facilitate the study of connectomes in the brain and other tissues.

    1. Neuroscience
    Damian Koevoet, Laura Van Zantwijk ... Christoph Strauch
    Research Article

    What determines where to move the eyes? We recently showed that pupil size, a well-established marker of effort, also reflects the effort associated with making a saccade (‘saccade costs’). Here, we demonstrate saccade costs to critically drive saccade selection: when choosing between any two saccade directions, the least costly direction was consistently preferred. Strikingly, this principle even held during search in natural scenes in two additional experiments. When increasing cognitive demand experimentally through an auditory counting task, participants made fewer saccades and especially cut costly directions. This suggests that the eye-movement system and other cognitive operations consume similar resources that are flexibly allocated among each other as cognitive demand changes. Together, we argue that eye-movement behavior is tuned to adaptively minimize saccade-inherent effort.