Echolocation: The brain limit
A small fish, darting about in the sea: tonight’s dinner for a savvy predator. If you, the reader, were the predator, you would only have your hands, teeth, and brain to catch the slippery creature that will respond to your approach with agile, evasive twists and turns (Moore and Biewener, 2015). Your eyes would track the fish through rapid, jerky movements that lock on to its new position 100–250 milliseconds after it has moved: this is the length of time it takes for your nervous system to process the information, and for your body’s muscles to respond (Erkelens, 2006).
Now imagine doing this in the dark, murky depths of the ocean – a challenging hunting ground for any optokinetic predator (that is, an animal that relies on its visual system to catch its prey). Toothed whales, such as dolphins and porpoises, have solved this quandary by evolving an echolocation system. Like bats, they emit a series of sonic clicks and then listen and analyze the echoes that bounce off the objects around them, including nearby meals. When the whales switch from slowly stalking to actively pursuing prey, they rapidly increase their click rate to get more information about their target’s location, creating a rapid train of sounds called a buzz (Madsen and Surlykke, 2013).
Until now, the echolocation of toothed whales was presumed to work on a synchronous ‘click-by-click’ basis, like human sonar systems: a new click would be produced as soon as the previous one had been received and processed (Au, 1993). However, given tooth whales’ rapid buzz rates, the animals would need to process information and respond to it 100 times faster than optokinetic predators (Kirchner and Thorpe, 2006). Is this the case, or do whales rely on a different strategy? Now, in eLife, Heather Vance from the University of St Andrews and colleagues based in the United Kingdom, Denmark, Spain and France report a new approach that sheds light on how toothed whales keep up with this rapid train of stimuli (Vance et al., 2021).
The team used suction cups to temporarily attach small electronic tags onto free-ranging beaked whales and harbor porpoises. The sensors recorded outgoing sonar clicks and returned echoes, as well as fine-scale data on the animals’ movement (such as their direction, speed and acceleration; Johnson and Tyack, 2003). Vance et al. then used this data to determine how close the predators were to their prey, how rapidly they sent and received clicks, and how they moved in response.
Results from the tags revealed that during the final moments of a pursuit, clicks are just two to three milliseconds apart – indicating that these rapid buzzes contain the equivalent of 500 clicks per second. Yet, it took the whales 100–200 milliseconds to physically respond to the echo, which is comparable to the delayed response time of optokinetic predators (Erkelens, 2006; Kirchner and Thorpe, 2006; Engbert et al., 2011). Experiments with captive harbor porpoises trained to respond to randomly moving target balls confirmed these findings. Overall, beaked whales’ reaction times were slightly longer than those of the smaller porpoises – suggesting that larger bodies respond more slowly. Nonetheless, both species shared strikingly similar response times given that they have evolved independently for the past 20 million years (Berta et al., 2014).
Overall, if whales processed sensory data on a click-by-click basis (as originally supposed), they would show much faster reaction times. These findings therefore refute the original ‘click-by-click’ claim whereby echolocators would wait to respond to an echo before releasing a new click. Instead, they suggest that both these ‘echokinetic’ animals (as named by Vance et al.) and optokinetic predators share a common neural mechanism that evolved in an earlier common ancestor – but when and in which species remains a mystery. In both groups, hunting responses are limited by the speed at which the brain can process information, and the muscles can respond (Figure 1). So, why do toothed whales produce clicks 100 times faster than they can process and respond to them?
The answer likely lies in the fact that clicks are produced by the rapid vibration of nasal valves (or ‘phonic lips’) as air passes through them – similar to the squeaky sounds that emerge from air escaping from a balloon (Berta et al., 2014). How fast the clicks are created depends on the tension of the phonic lips and air pressure; it is likely that this anatomical process is not as finely controlled as the contraction of muscles involved in swimming and chasing prey. However, this creates a sensor equivalent to the fovea, an eye region densely packed with light-sensitive nerve cells that provides the sharpest vision. The densely packed (timewise) buzz of rapid clicks may create an equally sensitive ‘echolocatory fovea’ that allows the predator to integrate multiple echoes caused by the prey’s movements.
Toothed whales are not the only predators in the sea, and not all of them can perform echolocation. For example, seals use the whiskers on their snouts and surrounding their large eyes to sense the tiny water vibrations produced by moving prey (Dehnhardt et al., 1998). Yet, whether mammals use their eyes, whiskers or sonic pings, the results by Vance et al. suggest that they may all rely on roughly the same neurological processes to catch their dinner.
References
-
Review of the cetacean nose: form, function, and evolutionThe Anatomical Record 297:2205–2215.https://doi.org/10.1002/ar.23034
-
Coordination of smooth pursuit and saccadesVision Research 46:163–170.https://doi.org/10.1016/j.visres.2005.06.027
-
A digital acoustic recording tag for measuring the response of wild marine mammals to soundIEEE Journal of Oceanic Engineering 28:3–12.https://doi.org/10.1109/JOE.2002.808212
-
Outrun or outmaneuver: predator-prey interactions as a model system for integrating biomechanical studies in a broader ecological and evolutionary contextIntegrative and Comparative Biology 55:1188–1197.https://doi.org/10.1093/icb/icv074
Article and author information
Author details
Publication history
Copyright
© 2021, Werth and Corbett
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 588
- views
-
- 47
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
- Microbiology and Infectious Disease
Interspecies interactions involving direct competition via bacteriocin production play a vital role in shaping ecological dynamics within microbial ecosystems. For instance, the ribosomally produced siderophore bacteriocins, known as class IIb microcins, affect the colonization of host-associated pathogenic Enterobacteriaceae species. Notably, to date, only five of these antimicrobials have been identified, all derived from specific Escherichia coli and Klebsiella pneumoniae strains. We hypothesized that class IIb microcin production extends beyond these specific compounds and organisms. With a customized informatics-driven approach, screening bacterial genomes in public databases with BLAST and manual curation, we have discovered 12 previously unknown class IIb microcins in seven additional Enterobacteriaceae species, encompassing phytopathogens and environmental isolates. We introduce three novel clades of microcins (MccW, MccX, and MccZ), while also identifying eight new variants of the five known class IIb microcins. To validate their antimicrobial potential, we heterologously expressed these microcins in E. coli and demonstrated efficacy against a variety of bacterial isolates, including plant pathogens from the genera Brenneria, Gibbsiella, and Rahnella. Two newly discovered microcins exhibit activity against Gram-negative ESKAPE pathogens, i.e., Acinetobacter baumannii or Pseudomonas aeruginosa, providing the first evidence that class IIb microcins can target bacteria outside of the Enterobacteriaceae family. This study underscores that class IIb microcin genes are more prevalent in the microbial world than previously recognized and that synthetic hybrid microcins can be a viable tool to target clinically relevant drug-resistant pathogens. Our findings hold significant promise for the development of innovative engineered live biotherapeutic products tailored to combat these resilient bacteria.
-
- Ecology
For the first time in any animal, we show that nocturnal bull ants use the exceedingly dim polarisation pattern produced by the moon for overnight navigation. The sun or moon can provide directional information via their position; however, they can often be obstructed by clouds, canopy, or the horizon. Despite being hidden, these bodies can still provide compass information through the polarised light pattern they produce/reflect. Sunlight produces polarised light patterns across the overhead sky as it enters the atmosphere, and solar polarised light is a well-known compass cue for navigating animals. Moonlight produces an analogous pattern, albeit a million times dimmer than sunlight. Here, we show evidence that polarised moonlight forms part of the celestial compass of navigating nocturnal ants. Nocturnal bull ants leave their nest at twilight and rely heavily on the overhead solar polarisation pattern to navigate. Yet many foragers return home overnight when the sun cannot guide them. We demonstrate that these bull ants use polarised moonlight to navigate home during the night, by rotating the overhead polarisation pattern above homing ants, who alter their headings in response. Furthermore, these ants can detect this cue throughout the lunar month, even under crescent moons, when polarised light levels are at their lowest. Finally, we show the long-term incorporation of this moonlight pattern into the ants’ path integration system throughout the night for homing, as polarised sunlight is incorporated throughout the day.