Ligand binding remodels protein side chain conformational heterogeneity

  1. Stephanie A Wankowicz
  2. Saulo H de Oliveira
  3. Daniel W Hogan
  4. Henry van den Bedem
  5. James S Fraser  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Atomwise, Inc, United States

Abstract

While protein conformational heterogeneity plays an important role in many aspects of biological function, including ligand binding, its impact has been difficult to quantify. Macromolecular X-ray diffraction is commonly interpreted with a static structure, but it can provide information on both the anharmonic and harmonic contributions to conformational heterogeneity. Here, through multiconformer modeling of time- and space-averaged electron density, we measure conformational heterogeneity of 743 stringently matched pairs of crystallographic datasets that reflect unbound/apo and ligand-bound/holo states. When comparing the conformational heterogeneity of side chains, we observe that when binding site residues become more rigid upon ligand binding, distant residues tend to become more flexible, especially in non-solvent exposed regions. Among ligand properties, we observe increased protein flexibility as the number of hydrogen bonds decrease and relative hydrophobicity increases. Across a series of 13 inhibitor bound structures of CDK2, we find that conformational heterogeneity is correlated with inhibitor features and identify how conformational changes propagate differences in conformational heterogeneity away from the binding site. Collectively, our findings agree with models emerging from NMR studies suggesting that residual side chain entropy can modulate affinity and point to the need to integrate both static conformational changes and conformational heterogeneity in models of ligand binding.

Data availability

Refined models are available here: https://zenodo.org/record/5533006#.YVJr2Z5KgUsCode can be found in the following repositories:-Dataset selection: https://github.com/stephaniewankowicz/PDB_selection_pipeline-Refinement/qFit pipeline: https://github.com/stephaniewankowicz/refinement_qFit-Analysis/Figures: https://github.com/fraser-lab/Apo_Holo_Analysis-qFit: https://github.com/ExcitedStates/qfit-3.0.

The following data sets were generated

Article and author information

Author details

  1. Stephanie A Wankowicz

    Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Saulo H de Oliveira

    Atomwise, Inc, San Francisco, United States
    Competing interests
    Saulo H de Oliveira, is an employee of Atomwise Inc..
  3. Daniel W Hogan

    Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Henry van den Bedem

    Atomwise, Inc, San Francisco, United States
    Competing interests
    Henry van den Bedem, is an employee of Atomwise Inc..
  5. James S Fraser

    Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
    For correspondence
    jfraser@fraserlab.com
    Competing interests
    James S Fraser, has equity, has received consulting fees, and has sponsored research agreements with Relay Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5080-2859

Funding

National Science Foundation (GRFP 2034836)

  • Stephanie A Wankowicz

National Institutes of Health (GM123159)

  • James S Fraser

National Institutes of Health (GM124149)

  • James S Fraser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Wankowicz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,206
    views
  • 599
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stephanie A Wankowicz
  2. Saulo H de Oliveira
  3. Daniel W Hogan
  4. Henry van den Bedem
  5. James S Fraser
(2022)
Ligand binding remodels protein side chain conformational heterogeneity
eLife 11:e74114.
https://doi.org/10.7554/eLife.74114

Share this article

https://doi.org/10.7554/eLife.74114

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.