The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx

  1. Luigi Prisco
  2. Stephan Hubertus Deimel
  3. Hanna Yeliseyeva
  4. André Fiala
  5. Gaia Tavosanis  Is a corresponding author
  1. German Center for Neurodegenerative Diseases, Germany
  2. University of Göttingen, Germany

Abstract

To identify and memorize discrete but similar environmental inputs, the brain needs to distinguish between subtle differences of activity patterns in defined neuronal populations. The Kenyon cells of the Drosophila adult mushroom body (MB) respond sparsely to complex olfactory input, a property that is thought to support stimuli discrimination in the MB. To understand how this property emerges, we investigated the role of the inhibitory anterior paired lateral neuron (APL) in the input circuit of the MB, the calyx. Within the calyx, presynaptic boutons of projection neurons (PNs) form large synaptic microglomeruli (MGs) with dendrites of postsynaptic Kenyon cells (KCs). Combining EM data analysis and in vivo calcium imaging, we show that APL, via inhibitory and reciprocal synapses targeting both PN boutons and KC dendrites, normalizes odour-evoked representations in MGs of the calyx. APL response scales with the PN input strength and is regionalized around PN input distribution. Our data indicate that the formation of a sparse code by the Kenyon cells requires APL-driven normalization of their MG postsynaptic responses. This work provides experimental insights on how inhibition shapes sensory information representation in a higher brain centre, thereby supporting stimuli discrimination and allowing for efficient associative memory formation.

Data availability

All source data used to generate figures are available at: https://doi.org/10.5061/dryad.bk3j9kdd1

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Luigi Prisco

    Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Stephan Hubertus Deimel

    Department of Molecular Neurobiology of Behavior, University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4678-4926
  3. Hanna Yeliseyeva

    Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. André Fiala

    Department of Molecular Neurobiology of Behavior, University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9745-5145
  5. Gaia Tavosanis

    Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases, Bonn, Germany
    For correspondence
    Gaia.Tavosanis@dzne.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8679-5515

Funding

Deutsche Forschungsgemeinschaft (FOR 2705)

  • André Fiala
  • Gaia Tavosanis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Prisco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,999
    views
  • 280
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Luigi Prisco
  2. Stephan Hubertus Deimel
  3. Hanna Yeliseyeva
  4. André Fiala
  5. Gaia Tavosanis
(2021)
The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx
eLife 10:e74172.
https://doi.org/10.7554/eLife.74172

Share this article

https://doi.org/10.7554/eLife.74172

Further reading

    1. Neuroscience
    Vincent Huson, Wade G Regehr
    Research Article

    Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.

    1. Neuroscience
    Choongheon Lee, Mohammad Shokrian ... Jong-Hoon Nam
    Research Article

    We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery. When outer-hair-cell motility was suppressed by salicylate, the facilitation effect was compromised. A low-frequency tone was more effective than broadband noise, especially for drug delivery to apical locations. Computational model simulations provided the physical basis for our observation, which incorporated solute diffusion, fluid advection, fluid–structure interaction, and outer-hair-cell motility. Active outer hair cells deformed the organ of Corti like a peristaltic tube to generate apically streaming flows along the tunnel of Corti and basally streaming flows along the scala tympani. Our measurements and simulations coherently suggest that active outer hair cells in the tail region of cochlear traveling waves drive cochlear fluid circulation.